作者supergud (小胖)
看板Grad-ProbAsk
標題Re: [理工] [離散]-生成函數
時間Tue Mar 2 11:00:18 2010
※ 引述《assassin88 (Ace)》之銘言:
: Determine how many integer solutions there are to x1+x2+x3+x4=18 if 0<=xi<=7
: for all 1<=i<=4 and both x2 and x4 are odd.
: 想請問的是有沒有特別解法,因為如果生成函數解很麻煩..
(1+x+x^2+...)^2(x+x^3+x^5+x^7)^2
= x^2(1-x^8/1-x)^2(1-x^8/1-x^2)^2
= x^2(1-x^8)^4(1-x)^-2(1-x^2)^-2
= x^2(1-x^8)^4(1-x)^-4(1+x)^-2
= x^2(1-4x^8+6x^16-...)Σ(4+r-1)x^rΣ(-1)^r(2+r-1)x^r
r r
= (4+8-1)(2+8-1) - 4(4+4-1)(2+4-1) + 6
8 8 4 4
想請問這樣為什麼不行
我有少哪些想法嗎
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 124.8.1.138
推 lovefo:狙蚸M小黃的不一樣 03/02 11:07
→ lovefo:答案和 03/02 11:08
→ supergud:小黃的答案是啥 03/02 11:15
推 lovefo:71 他解了半頁.... 03/02 11:17
→ supergud:哪一年的考題阿 03/02 11:19
推 lovefo:85 中正 03/02 11:28
→ supergud:囧 我計算的方式不同答案差那麼多 03/02 11:34
※ 編輯: supergud 來自: 124.8.1.138 (03/02 12:02)
推 b76516:xi 從1到4都要小於7阿 (1+x+x^2+...)^2這個式子沒有小於7 03/02 15:00