看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《atled (喬巴)》之銘言: : http://www-o.ntust.edu.tw/~lib/pdf/Master/94/m940101.pdf : 第一題指定用拉式 : 可是我取完拉式 : 上下兩式相減之後就沒得算了 : 有人可以給我點提示嗎? [3 1]X'' = [ 1 3]X + [e^t ] [2 1] [ 1 2] [e^-t] X'' = [ 0 1]X + [e^t - e^(-t)] = AX + B [ 1 0] [-2e^t + 3e^(-t)] (A-λI) = 0 , λ= 1,-1 , s = [1 1] , s^(-1) = 1/2[1 1] [1 -1] [1 -1] let X=sY Y'' = (S^-1AS)Y +S^(-1)B = [ 1 0]Y + 1/2 [-e^t +2e^(-t)] [ 0 -1] [3e^t - 4e^(-t)] => Y = [c1e^t + c2e^(-t)+1/2*(-te^t+2te^-t)] [c3sint + c4cost +1/4*(3e^t -4e^-t)] X = SY = .................. x(0) = y(0) = 1 , x'(0)=y'(0)=0 c1+c2+c4 = 1 c1+c2-c4 = 1 c1-c2+c3-1/2 + 1 = 0 c1-c2-c3-1/2 + 1 = 0 c1=c3 = 0 c1=1/4 , c2 = 3/4 X = [1/4e^t +3/4e^-t + 1/2(-te^t+2te^(-t)) +1/4(3e^t-4e^(-t))] [1/4e^t +3/4e^-t + 1/2(-te^t+2te^(-t)) -1/4(3e^t-4e^(-t))] = [e^t -1/4e^(-t) + 1/2(-te^t+2te^(-t))] [-1/2e^t + 7/4e^-t + 1/2(-te^t+2te^(-t))] -------------------- 再來轉拉式給他(X) (3s^2+1)X(s) + (s^2+3)Y(s) = 1/(s-1) + 4s (2s^2+1)X(s) + (s^2+2)Y(s) = 1/(s+1) + 3s 1 1/4 1/2 1 X(s) = _______ - _______ - _______ + ______ 4(s-1) (s+1) (s-1)^2 (s+1)^2 -1/2 7/4 1/2 1 Y(s) = _______ + ______ - ______ + ______ s-1 s+1 (s-1)^2 (s+1)^2 -1 => X(t) = L{X(s)} = ......... 過程錯了就算了Orz -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.171.77.144
atled:感謝你 03/04 14:32