看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《t5d (t5d)》之銘言: : 1.題目要求用拉氏解 : x' - 2y' + 3z = 0 : x - 4y' + 3z'= t : x - 2y' + 3z'= -1 : x(0) = y(0) = z(0) = 0 : 囧> 只會用2.3式相減求出y 在代回去就不知道怎麼求x z了 : 2.Evaluate the function by using the Residue theorem : 2π cos2θ : ∫ ------------------ dθ , p > 1 : 0 1 - 2p cosθ + p^2 令 p ≠ 1 且 z = e^iθ , dθ = dz/iz 帶回 2π 1/2( z^2 + 1/z^2 ) dz I = ∫ --------------------------------- ---- 0 (1 + p^2 ) - 2p(1/2)( z + 1/z ) iz 1 2π ( z^4 + 1 )/z^2 = ----∫ --------------------------- dz 2i 0 (1 + p^2 ) - p( z^2 + 1 ) -1 2π z^4 + 1 = -----∫ ------------------------------- dz 2pi 0 z^2[ z^2 - ( 1/p + p )z + 1 ] i 2π z^4 + 1 = ----∫ ------------------------- dz 2p 0 z^2( z - 1/p )( z - p ) z^4 + 1 令 f(z) = ------------------------- z^2( z - 1/p )( z - p ) 在 C : |z| = 1內具有 z = 0的2階pole 及 z = 1/p的1階pole ( p > 1 ) d 1 + p^2 Res f(0) = lim ----[ z^2f(z) ] = --------- z→0 dz p 1 1 1 + p^4 Res f(---) = lim ( z - --- )f(z) = -------------- p z→1/p p p( 1 - p^2 ) i 1 所求 I = ---- 2πi[ Res f(0) + Res f(---) ] 2p p -2π = ---------------- p^2( 1 - p^2 ) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.104.104.46
t5d:Thanks~ 03/05 07:35