看板 Grad-ProbAsk 關於我們 聯絡資訊
3.(b) (1)証明Mn = U 直和 W (直和要証明兩件事1.獨立子空間 以及 2.和生成) 1.証獨立子空間(U 交集 W = {0}) pf:for all A屬於 U 交集 W T T => A = A 且 A = -A => A = -A => A = 0 所以 U 交集 W = {0} 2.証和生成(Mn = U + W) pf:for all A 屬於 Mn T T => A = [(A + A )/2] + [(A - A )/2] T T T T 其中[(A + A )/2]屬於U (因為[(A + A )/2] = [(A + A )/2] ) T T T T [(A - A )/2]屬於W (因為[(A - A )/2] = - [(A - A )/2]) (2)求dim(U)以及dim(W) sol:1.U是收集n*n的symmetric matrix A 因此A會對稱於對角線,所以A可有 n + (1+2+3+...+n-1)個變數 因此dim(U)=n(n+1)/2 2.根據維度定理dim(Mn)=dim(U)+dim(W) => n*n = n(n+1)/2 + dim(W) => dim(W) = n*n - n(n+1)/2 = n(n-1)/2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 60.244.36.23