看板 Grad-ProbAsk 關於我們 聯絡資訊
Let H{。} be a linear time invarient system such that given an input function x(t) : (D = d/dt) H{x(t)}= (D^4 + D^3 + D^2 + D + 1)x(t) (a)Does the system H{。} has an impulse response? If yes , find the impulse response ; otherwise give your reasons in detail . (b)Find all the possible real function x(t) such that H{x(t)} = sin(t) . ∞ (c)Let y(t) = Σ δ(t-k) , where δ(t) is the k=-∞ Dirac delta function. ∞ Prove that y(t) = Σ exp(i*2pi*k*t) in the k=-∞ sense of distributions. (d)Use the above result to find all the possible real input function x(t) such that H{x(t)}= y(t). 這題c選項看不懂他要幹麻 有人能夠幫忙講解嗎 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.138.18.5
doom8199:c 的證明就直接用 Fourier series 展開 03/14 20:57
BLUEBL00D:還有H{x(t)}= y(t) => H{x(t-k)}= y(t-k) 要怎麼用呢? 03/14 20:57
doom8199:不過 in the sense of xxx 不知道是啥意思 OTZ 03/14 20:57
BLUEBL00D:謝謝 這樣我知道他在問啥了 03/14 21:03
※ 編輯: BLUEBL00D 來自: 220.138.18.5 (03/14 21:04)
BLUEBL00D:另外有人要這張的題目來練習嗎 我可以放上來 03/14 21:05
shinyhaung:B大你可以整題解完嗎? 電機和光電都有考 我不會= =" 03/14 21:07