作者BLUEBL00D (藍血魂)
看板Grad-ProbAsk
標題Re: [理工] [工數] O.D.E. (和訊號與系統??)
時間Sun Mar 14 21:57:47 2010
※ 引述《BLUEBL00D (藍血魂)》之銘言:
: Let H{。} be a linear time invarient system such
: that given an input function x(t) : (D = d/dt)
: H{x(t)}= (D^4 + D^3 + D^2 + D + 1)x(t)
: (a)Does the system H{。} has an impulse response?
: If yes , find the impulse response ; otherwise
: give your reasons in detail .
┌───────────┐
input │ L.T.I. system │ output
------>│ │-------->
X(jω)│ H(jω) │ Y(jω)
└───────────┘
Y(jω) = H(jω) X(jω) , by Convolution Thm.
H(jw)=(jw)^4 + (jw)^3 + (jw)^2 + (jw)^1 + 1
這個地方我不太肯定是不是這樣 訊號從大2修完就沒碰了
令 F{。} 表 Fourier Transform and F{δ(t)} = 1
F^-1{。} 表 inverse Fourier Transform
Y(jω) = H(jw)*1 = H(jw)
= (jw)^4 + (jw)^3 + (jw)^2 + (jw)^1 + 1
impulse response : y(t) = F^-1{Y(jω)}
還有我也不知道是不是每個系統都有impulse response??
: (b)Find all the possible real function x(t) such
: that H{x(t)} = sin(t) .
這邊我不知道怎麼由訊號與系統角度寫這題 我直接當成O.D.E.解
(D^4 + D^3 + D^2 + D + 1)x(t)=sin(t)
<1>求xh: let x=exp(mt) 帶入 O.D.E.
=> m^4 + m^3 + m^2 + m + 1 = 0
又m^5 - 1 = (m-1)(m^4 + m^3 + m^2 + m + 1)
由m^5 - 1 = 0 得5個複根(高中複數n次方根)
會在m = (R,θ) = (1,2kπ/5) , k=0,1,2,3,4,...
然後再去掉m=1 ( k=0 ) 的解
1.k=1,4 => x1=exp[cos(2π/5)t]{c1cos[sin(2π/5)]t + c2sin[sin(2π/5)]t}
2.k=2,3 => x2=exp[cos(4π/5)t]{c3cos[sin(4π/5)]t + c4sin[sin(4π/5)]t}
<2>求xp:反微算子=>xp=sin(t)
<3> x=xh+xp
: ∞
: (c)Let y(t) = Σ δ(t-k) , where δ(t) is the
: k=-∞
: Dirac delta function.
: ∞
: Prove that y(t) = Σ exp(i2kπt) in the
: k=-∞
: sense of distributions.
y(t)展成Fourier-series , 又y(t)的fundamental period T=1
ωk=2kπ/T=2kπ
∞
let y(t) = Σ ck exp(i2kπt)
k=-∞
0.5
其中ck = (1/T) ∫ δ(t) exp(-i2kπt) dt = 1 (T=1,k為整數)
-0.5
∞ ∞
故知 y(t) = Σ δ(t-k) = Σ exp(i2kπt)
k=-∞ k=-∞
: (d)Use the above result to find all the possible
: real input function x(t) such that H{x(t)}= y(t).
1. 由(b)小題已知xh
2. let L(D) = (D^4 + D^3 + D^2 + D + 1)
xp = [1/L(D)]y(t)
∞
= Σ { [(i2kπ) - 1] / [(i2kπ)^5 - 1] } exp(i2kπt)
k=-∞
3. x=xh+xp
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 220.138.18.5
推 shinyhaung:原來要變成m^5-1=0才能算= =" 卡很久... 03/14 22:02
→ doom8199:要寫 h(t) , H(jw) 會稱做 h(t)的 frequency response 03/14 22:33
※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:13)
※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:15)
※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:21)
※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:29)