看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《BLUEBL00D (藍血魂)》之銘言: : Let H{。} be a linear time invarient system such : that given an input function x(t) : (D = d/dt) : H{x(t)}= (D^4 + D^3 + D^2 + D + 1)x(t) : (a)Does the system H{。} has an impulse response? : If yes , find the impulse response ; otherwise : give your reasons in detail . ┌───────────┐ input │ L.T.I. system │ output ------>│ │--------> X(jω)│ H(jω) │ Y(jω) └───────────┘ Y(jω) = H(jω) X(jω) , by Convolution Thm. H(jw)=(jw)^4 + (jw)^3 + (jw)^2 + (jw)^1 + 1 這個地方我不太肯定是不是這樣 訊號從大2修完就沒碰了 令 F{。} 表 Fourier Transform and F{δ(t)} = 1 F^-1{。} 表 inverse Fourier Transform Y(jω) = H(jw)*1 = H(jw) = (jw)^4 + (jw)^3 + (jw)^2 + (jw)^1 + 1 impulse response : y(t) = F^-1{Y(jω)} 還有我也不知道是不是每個系統都有impulse response?? : (b)Find all the possible real function x(t) such : that H{x(t)} = sin(t) . 這邊我不知道怎麼由訊號與系統角度寫這題 我直接當成O.D.E.解 (D^4 + D^3 + D^2 + D + 1)x(t)=sin(t) <1>求xh: let x=exp(mt) 帶入 O.D.E. => m^4 + m^3 + m^2 + m + 1 = 0 又m^5 - 1 = (m-1)(m^4 + m^3 + m^2 + m + 1) 由m^5 - 1 = 0 得5個複根(高中複數n次方根) 會在m = (R,θ) = (1,2kπ/5) , k=0,1,2,3,4,... 然後再去掉m=1 ( k=0 ) 的解 1.k=1,4 => x1=exp[cos(2π/5)t]{c1cos[sin(2π/5)]t + c2sin[sin(2π/5)]t} 2.k=2,3 => x2=exp[cos(4π/5)t]{c3cos[sin(4π/5)]t + c4sin[sin(4π/5)]t} <2>求xp:反微算子=>xp=sin(t) <3> x=xh+xp : ∞ : (c)Let y(t) = Σ δ(t-k) , where δ(t) is the : k=-∞ : Dirac delta function. : ∞ : Prove that y(t) = Σ exp(i2kπt) in the : k=-∞ : sense of distributions. y(t)展成Fourier-series , 又y(t)的fundamental period T=1 ωk=2kπ/T=2kπ ∞ let y(t) = Σ ck exp(i2kπt) k=-∞ 0.5 其中ck = (1/T) ∫ δ(t) exp(-i2kπt) dt = 1 (T=1,k為整數) -0.5 ∞ ∞ 故知 y(t) = Σ δ(t-k) = Σ exp(i2kπt) k=-∞ k=-∞ : (d)Use the above result to find all the possible : real input function x(t) such that H{x(t)}= y(t). 1. 由(b)小題已知xh 2. let L(D) = (D^4 + D^3 + D^2 + D + 1) xp = [1/L(D)]y(t) ∞ = Σ { [(i2kπ) - 1] / [(i2kπ)^5 - 1] } exp(i2kπt) k=-∞ 3. x=xh+xp -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.138.18.5
shinyhaung:原來要變成m^5-1=0才能算= =" 卡很久... 03/14 22:02
doom8199:要寫 h(t) , H(jw) 會稱做 h(t)的 frequency response 03/14 22:33
※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:13) ※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:15) ※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:21) ※ 編輯: BLUEBL00D 來自: 61.224.230.27 (03/15 02:29)