看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《chihhungw (涉世未深做人好難)》之銘言: : (a) y"+9=r(t) with y(0)=y'(0)= 0 : r(t)=2u(t-1)-3δ(t-2) Laplace轉換可得 9 2 s^2Y(s) + --- = ---e^-s - 3e^-2s s s 2 3 9 => Y(s) = -----e^-s - -----e^-2s - ----- s^3 s^2 s^3 -1 2 | | 9 2 => y(t) = L {Y(s)} = t u(t)| - 3tu(t)| - ---t u(t) |t->t-1 |t->t-2 2 2 9 2 = (t-1) u(t-1) - 3(t-2)u(t-2) - ---t u(t) 2 : (b) y"+2ty'-2y=0 ,y(0)=0 y'(0)=10 y(t)=? Laplace轉換可得 d [s^2Y(s) - sy(0) - y'(0)] - 2----[sY(s) - y(0)] -2Y(s) = 0 ds d => (s^2Y(s) - 10 - 2Y(s) - 2s----Y(s) - 2Y(s) = 0 ds d => (s^2-4)Y(s) - 2s----Y(s) = 10 ds d s^2 - 4 -5 => ----Y(s) + (---------)Y(s) = ---- 為一階O.D.E. ds 2s s 求積分因子 2 s I = exp[∫(--- - ---)ds] s 2 1 = exp[2ln|s| - ---s^2] 4 -1 = s^2 e^----s^2 4 -5 -1 -1 IY(s) = ∫---- s^2 e^----s^2 ds = -5∫s e^---- ds (令s^2 = u , 2s ds = du) s 4 4 1 -1 -1 = -5∫---e^----u du = 10e^----u 2 4 4 -1 1 1 10 => Y(s) = 10e^----s^2 (-----e^---s^2) = ----- 4 s^2 4 s^2 故所求 y(t) = 10t 因為說要詳細所以打很長= =" : (c) Using the convolution theorem , solve : y"+y =sint ,y(0)=0 y'(0)=0 Laplace轉換可得 1 (s^2 + 1)Y(s) = --------- s^2 + 1 1 1 => Y(s) = ---------*--------- s^2 + 1 s^2 + 1 ∞ => y(t) = sin t * sin t = ∫ sin(τ)sin(t-τ)dτ 0 這邊偷偷用萊布尼茲作 1 1 L{---sin at} = --------- 兩端對a微分可得 a s^2 + 1 tcos at - sin at -2a => L{------------------} = ------------- 這邊a=1帶入 2a^2 (s^2 + a^2) tcos t - sin t 1 => L{----------------} = ----------- -2 (s^2 + 1) 故所求 -1 y(t) = sin t * sin t = ----(tcos t - sin t) 2 : 感激不盡 希望能有詳細的步驟 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 112.105.128.71 ※ 編輯: shinyhaung 來自: 112.105.128.71 (03/17 01:48)
ntust661:推 03/17 04:38