作者mdpming (阿阿 要加油)
看板Grad-ProbAsk
標題Re: [理工] [線代]-對稱矩陣
時間Sun Mar 21 17:48:01 2010
※ 引述《crazykk (JK)》之銘言:
: ※ 引述《mdpming (阿阿 要加油)》之銘言:
: : [ 1 0 3 0]
: : [ 0 0 0 0] = Q
: : [ 3 0 1 0]
: : [ 0 0 0 0]
: : 1 .find P orthogonally diagonalizes of Q..
: : T
: : 2.P QP
: : 恭喜上榜的各位 都好利害
: 1. [ 1 0 3 0]
: 令Q=[ 0 0 0 0]
: [ 3 0 1 0]
: [ 0 0 0 0]
: |1-x 0 3 |
: PQ(x)=det(Q-xI)=-x| 0 -x 0 |=-x[(1-x)^2 (-x) - 9(-x)]
: | 3 0 1-x|
我這一步 不太懂
請問要怎麼降階...
: =(-x)^2 (-8-2x+x^2)=(-x)^2 (x-4)(x+2)
: λ(Q)={-2,0,4}
: [ 3 0 3 0] [-1] [-1/√2]
: V(-2)=ker(Q+2I)=ker[ 0 2 0 0]=span{[ 0]} 單位化 [ 0 ]
: [ 3 0 3 0] [ 1] => [ 1/√2]
: [ 0 0 0 2] [ 0] [ 0 ]
: [ 1 0 3 0] [0] [0]
: V(0)=ker(Q)=ker[ 0 0 0 0]=span{[1],[0]}
: [ 3 0 1 0] [0] [0]
: [ 0 0 0 0] [0] [1]
: [0] [0] [0] [0]
: 先做Gram-Schmidt => [1],[0] 再單位化=> [1],[0]
: [0] [0] [0] [0]
: [0] [1] [0] [1]
: [-3 0 3 0] [1] [1/√2]
: V(4)=ker(Q-4I)=ker[ 0 -4 0 0]=span{[0]} 單位化 [ 0 ]
: [ 3 0 -3 0] [1] => [1/√2]
: [ 0 0 0 -4] [0] [ 0 ]
: [-1/√2 0 0 1/√2] [-2 0 0 0]
: 取P=[ 0 1 0 0 ] 使得P^T Q P =[ 0 0 0 0]
: [ 1/√2 0 0 1/√2] [ 0 0 0 0]
: [ 0 0 1 0 ] [ 0 0 0 4]
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.32.91.86
推 squallting:降階請翻高中數學@@ 03/21 17:49
→ mdpming:.... 03/21 19:04
推 youmehim:行列式乘開 03/21 23:17
推 youmehim:就是把某一行(列)各個元素乘以對應的子行列式 03/21 23:20
→ youmehim:每項在乘上(-1)^(該元素的row+column) 然後全部加起來 03/21 23:22