因為小第我沒修過機率,自己看書後,
又覺得寫出來的答案很不確定,煩請會
的人,幫我解答一下(希望可以大R回復)
謝謝。
-----------------------------------------------------
Q1: Let random variables Y = X^2 .Find the probability density
function and expectation of Y for the following cases.
1. X takes the value -2, -1, 0, 1, 2, 3 with
equal probability 1/6.
2. X is uniformly distributed in the interval (0,1).
Q2: There are two random variables X 屬於 {0, 1, 2} and
┌ 1 , if X = 0
Y = │
└ 0 , if X = 1,2
If P(X=0) = P(X=1) = P(X=2) = 1/3, and P(Y=0) = P(Y=1) = 1/2,
then are X and Y orthogonal? uncorrelated? independent?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.120.33.146
※ 編輯: swatch0811 來自: 122.120.33.146 (03/22 11:36)