看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《swatch0811 (............)》之銘言: 因為小第我沒修過機率,自己看書後, 又覺得寫出來的答案很不確定,煩請會 的人,幫我解答一下(希望可以大R回復) 謝謝。 ----------------------------------------------------- Q1: Let random variables Y = X^2 .Find the probability density function and expectation of Y for the following cases. 1. X takes the value -2, -1, 0, 1, 2, 3 with equal probability 1/6. X -2 -1 0 1 2 3 Y 4 1 0 1 4 9 P(X) 1/6 1/6 1/6 1/6 1/6 1/6 => Y 0 1 4 9 P(Y) 1/6 1/3 1/3 1/6 P(Y=y) = 1/6 , if y=0 1/3 , if y=1 1/3 , if y=4 1/6 , if y=9 0 , otherwise 2. X is uniformly distributed in the interval (0,1). f(x)=1 , 0<x<1 y=x^2 x=y^(1/2) d f(y) = | ─ y^(1/2) |* f(y^(1/2)) dy x = 0.5* y(-0.5) *1 Q2: There are two random variables X 屬於 {0, 1, 2} and ┌ 1 , if X = 0 Y = │ └ 0 , if X = 1,2 If P(X=0) = P(X=1) = P(X=2) = 1/3, and P(Y=0) = P(Y=1) = *有誤 P(Y=2) = 1/2 , then are X and Y orthogonal? uncorrelated? independent? orthogonal iff E[XY] = 0 E[XY] = 0 (∵xy=0 for all x,y) uncorrelated iff cov[XY]=0 cov[XY]= E[XY]-μ_x*μ_y = 0 - 1*1/2 ≠ 0 independent iff P(XY)=P(X)*P(Y) *這部份我不確定orz P(X=1,Y=1)=0 ≠P(X=1)*P(Y=1) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.120.33.146 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.119.137.219
swatch0811:抱歉剛剛P(Y=2) 打錯 我已編輯過了^^ 03/22 12:33
swatch0811:謝謝 03/22 12:37
selient:cov共變異數 03/22 13:09
swatch0811:謝^^ 03/22 13:27