看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《monkps ()》之銘言: : 1. xyy'=2y^2+4x^2 y(2)=4 y'=2x^(-1)y+4xy^(-1) y'-2x^(-1)y=4xy^(-1) Bernoulli n=-1 令u=y^[1-(-1)]=y^2 du dy ─ = 2y ─ = 2y[4xy^(-1)+2x^(-1)y] = 8x+4x^(-1)y^2 dx dx du ─ -4x^(-1)u = 8x ...(1) dx ∫-4x^(-1) dx I.F.= e = x^(-4) (1)乘以x^(-4)得 du x^(-4) ─ -4x^(-5)u = 8x^(-3) dx d ─[x^(-4)u]= 8x^(-3) dx x^(-4)u =∫8x^(-3) dx =-4x^(-2) + c x^(-4)*y^2 = -4x^(-2) + c y(2)=4代入得 2^(-4)*4^2 = -4*[2^(-2)] + c 1 = -1 + c c = 2 所求為x^(-4)*y^2 = -4x^(-2) + 2 : y-3 : 2.y'=------------ : x+y-1 (3-y)dx + (x+y-1)dy = 0...(1) M=3-y,N=x+y-1 @M @N ─ = -1 ─ = 1 @y @x @M @N ─ ≠ ─ @y @x @M @N -2 -2 [ ─ - ─ ] /M = ─── = -g(y) g(y) = ── @y @x 3-y y-3 -2 ∫── dy 1 I.F.=e y-3 = ──── (y-3)^2 (1)乘以(y-3)^(-2)得 -(y-3)^(-1)dx + (y-3)^(-2)*(x+y-1)dy = 0必為exact Ma=-(y-3)^(-1),Na=(y-3)^(-2)*(x+y-1) 存在ψ(x,y)使得 @ψ ─ = Ma @x ψ= ∫Ma dx = ∫-(y-3)^(-1) dx =-(y-3)^(-1)*x+h(y) @ψ ─ = (y-3)^(-2)*x+h'(y) = Na = (y-3)^(-2)*(x+y-1) @y = (y-3)^(-2)*x + (y-3)^(-2)*(y-1) y-1 1 2 h'(y)= ──── = ─── + ─── (y-3)^2 y-3 (y-3)^2 1 2 h(y)= ∫─── + ─── dy = ln│y-3│- 2(y-3)^(-1) + k y-3 (y-3)^2 ψ(x,y)=-(y-3)^(-1)*x+ln│y-3│- 2(y-3)^(-1) + k =(-x-2)*(y-3)^(-1)+ln│y-3│+ k 所求 (-x-2)*(y-3)^(-1)+ln│y-3│= c -x-2 即 ── + ln│y-3│= c y-3 : 3. (t^2-16)y'+ty=2t t 2t y'+───y = ─── ...(1) t^2-16 t^2-16 t ∫─── dt t^2-16 (1/2)ln│t^2-16│ I.F.= e = e = (t^2-16)^(1/2) (1)乘以(t^2-16)^(1/2)得 (t^2-16)^(1/2)y'+t*(t^2-16)^(-1/2)y=2t*(t^2-16)^(-1/2) d ──[(t^2-16)^(1/2)y]=2t*(t^2-16)^(-1/2) dt (t^2-16)^(1/2)y = ∫2t*(t^2-16)^(-1/2) (t^2-16)^(1/2)y = 2*(t^2-16)^(1/2) + c y = 2 + c*(t^2-16)^(-1/2) : 有勞各位了 : 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.162.229.80
monkps:原PO第二題看錯 是y-3 不過也讓我多學一題 謝謝 03/24 23:53
ytyty:沒看錯喔~移項過來變負號~所以變3-y 03/24 23:57
monkps:sorry 我看錯 鬼打牆 謝謝 03/25 07:35