看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《jason021866 (JasonHsu)》之銘言: : (2coshy+3x)dx+(xsinhy)dy=0 : 請問一下要怎麼解 : 我解出來的積分因子好像不太對 : 謝謝 [e^y+e^(-y)+3x]dx+[(1/2)x(e^y-e^(-y))]dy=0...(1) 令M=e^y+e^(-y)+3x,N=(1/2)x(e^y-e^(-y))] @表示偏微分 @M @N ─ = e^y-e^(-y) ─ = 1/2(e^y-e^(-y)) @y @x @M @N ─ ≠ ─ @y @x @M @N [─ - ─]/N = 1/x = f(x) @y @x ∫f(x)dx ∫1/xdx ln│x│ I.F.= e = e = e = x (1)乘以x得 x[e^y+e^(-y)+3x]dx+[(1/2)(x^2)(e^y-e^(-y))]dy=0必為exact 令Ma=x[e^y+e^(-y)+3x] Na=[(1/2)(x^2)(e^y-e^(-y))] @ψ 存在ψ(x,y)使得 ─ = Ma @x ψ(x,y)=∫Ma dx = ∫x[e^y+e^(-y)+3x]dx = [e^y+e^(-y)](1/2)x^2 + x^3 + h(y) @ψ ─ = [(1/2)(x^2)(e^y-e^(-y))] + h'(y) = Na = [(1/2)(x^2)(e^y-e^(-y))] @y 比較得h'(y)=0 h(y)=k 所以ψ(x,y)= (1/2)x^2[e^y+e^(-y)] + x^3 + k 所求為 (1/2)x^2[e^y+e^(-y)] + x^3 = c 或 (x^2)cosh(y) + x^3 = c -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.114.120.71