※ 引述《wellilin (QQ12)》之銘言:
: y'=y^2+2y/y^4+2xy+4x
: ans: x(y)=y^3-2y^2ln(y+2)+c
4 2
(y + 2xy + 4x)dy = (y + 2y)dx
4
y dy + 2x(y+2)dy = y(y+2)dx
同除以y(y+2)
3
2x y
dx - ---- dy = --------dy ,一階線性
y y+2
I = exp[∫(-2/y)dy] = 1/y^2
x y
d(----) = -------dy
y^2 y+2
x -2
d(----) = (1 + -----)dy
y^2 y+2
x
---- = y - 2lnc(y+2)
y^2
3 2
x = y - 2y lnc(y+2)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 118.167.132.42