看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《ruby791104 (阿年:))》之銘言: : 1.Show that A and A^T have the same eigenvalues. Do they necessarily have the : same eigenvectors? Explain. : 2.Let A be a 2 * 2 matrix. If tr(A) = 8 and det(A) = 12, what are the : eigenvalues of A? : 3.Let A be a nondefective n * n matrix with diagonalizing matrix X. Show that : the matrix Y = (X^-1)^T diagonalizes A^T. : 4.Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1. : Show that A^-1 = A. : 5.Find a matrix B such that B^2 = A. : ┌ ┐ : | 2 1| : A = | | : |-2 -1| : └ ┘ : 可以教我一下怎麼做嗎? : 麻煩各位好心的大大了(鞠躬 1. det(A-kI)=det((A-kI)^t)=det(A^t-kI) ->Same eigenvalues but not same eigenvector. ex: Ax=kx, A^tx=?=kx A=[2 3] pick ,k=0 ->x=(3,-2)^t [4 6] A^t=[2 4] when k=0 , A^tx=/=kx [3 6] ------------- 2. tr(A)=k1+k2=8 det(A)=k1k2=12 ->k1=2 ,k2=6 ------------- 3. let X=[x1,x2,...,xn] Axn=knxn AX=[k1x1,k2x2,...,knxn] =XD X^-1AX=D (X^t)A^t(X^-1)^t=D^t=D Y^-1A^tY=D ------------- 5. Ax=kx k=1,0 B=A^1/2 =aA+bI 1=a+b 0=b a=1 ->B=A ------------- 不過...這應該是作業吧= = 不像是考題...=.= -- I seek not to know only answers, but to understand the questions. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.193.214.165 ※ 編輯: iyenn 來自: 123.193.214.165 (04/15 23:34) ※ 編輯: iyenn 來自: 123.193.214.165 (04/15 23:49)
topee:I大又來值班..辛苦你了!! 牛舌餅..下次宅配給你@@ 04/15 23:54
iyenn:XD 04/15 23:59
ruby791104:嗯嗯……這是作業(跪) 謝謝I大囉,我再去研究研究! 04/16 00:12
ntust661:我也要牛舌餅ˊˋ 04/16 00:24
Ertkkpoo:牛舌餅是宜蘭名產嗎? 04/16 00:50
QQkimi:宜蘭不是三星蔥比較有名嗎?@_@" 04/16 06:42
iyenn:報告樓上,薄的那種很優!!@@ 04/16 08:13
QQkimi:恩 聽說薄的會比較有感覺沒錯-,- 04/16 08:33
youmehim:薄是形容三星蔥的詞嗎 XD 04/16 20:41