作者iyenn (曉風)
看板Grad-ProbAsk
標題Re: [理工] [線代]-eigenvalue證明&計算
時間Thu Apr 15 23:27:39 2010
※ 引述《ruby791104 (阿年:))》之銘言:
: 1.Show that A and A^T have the same eigenvalues. Do they necessarily have the
: same eigenvectors? Explain.
: 2.Let A be a 2 * 2 matrix. If tr(A) = 8 and det(A) = 12, what are the
: eigenvalues of A?
: 3.Let A be a nondefective n * n matrix with diagonalizing matrix X. Show that
: the matrix Y = (X^-1)^T diagonalizes A^T.
: 4.Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1.
: Show that A^-1 = A.
: 5.Find a matrix B such that B^2 = A.
: ┌ ┐
: | 2 1|
: A = | |
: |-2 -1|
: └ ┘
: 可以教我一下怎麼做嗎?
: 麻煩各位好心的大大了(鞠躬
1.
det(A-kI)=det((A-kI)^t)=det(A^t-kI)
->Same eigenvalues
but not same eigenvector.
ex: Ax=kx, A^tx=?=kx
A=[2 3] pick ,k=0 ->x=(3,-2)^t
[4 6]
A^t=[2 4] when k=0 , A^tx=/=kx
[3 6]
-------------
2.
tr(A)=k1+k2=8
det(A)=k1k2=12
->k1=2 ,k2=6
-------------
3.
let X=[x1,x2,...,xn]
Axn=knxn
AX=[k1x1,k2x2,...,knxn]
=XD
X^-1AX=D
(X^t)A^t(X^-1)^t=D^t=D
Y^-1A^tY=D
-------------
5.
Ax=kx
k=1,0
B=A^1/2
=aA+bI
1=a+b
0=b
a=1
->B=A
-------------
不過...這應該是作業吧= =
不像是考題...=.=
--
I seek not to know only answers, but to understand the questions.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.214.165
※ 編輯: iyenn 來自: 123.193.214.165 (04/15 23:34)
※ 編輯: iyenn 來自: 123.193.214.165 (04/15 23:49)
推 topee:I大又來值班..辛苦你了!! 牛舌餅..下次宅配給你@@ 04/15 23:54
→ iyenn:XD 04/15 23:59
推 ruby791104:嗯嗯……這是作業(跪) 謝謝I大囉,我再去研究研究! 04/16 00:12
推 ntust661:我也要牛舌餅ˊˋ 04/16 00:24
推 Ertkkpoo:牛舌餅是宜蘭名產嗎? 04/16 00:50
推 QQkimi:宜蘭不是三星蔥比較有名嗎?@_@" 04/16 06:42
→ iyenn:報告樓上,薄的那種很優!!@@ 04/16 08:13
推 QQkimi:恩 聽說薄的會比較有感覺沒錯-,- 04/16 08:33
推 youmehim:薄是形容三星蔥的詞嗎 XD 04/16 20:41