看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《ruby791104 (阿年:))》之銘言: : 1.Show that A and A^T have the same eigenvalues. Do they necessarily have the : same eigenvectors? Explain. : 2.Let A be a 2 * 2 matrix. If tr(A) = 8 and det(A) = 12, what are the : eigenvalues of A? : 3.Let A be a nondefective n * n matrix with diagonalizing matrix X. Show that : the matrix Y = (X^-1)^T diagonalizes A^T. : 4.Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1. : Show that A^-1 = A. since A is diagonalizable, so there is P , P is invertible such that P^(-1)AP =D, where D is diagonal matrix whose element are all either 1 of -1 and note that D^2 = I => D^(-1)=D so, A = PDP^(-1) => A^(-1) = PD^(-1)P^(-1) = PDP^(-1) = A. 應該是這樣囉 : 5.Find a matrix B such that B^2 = A. : ┌ ┐ : | 2 1| : A = | | : |-2 -1| : └ ┘ : 可以教我一下怎麼做嗎? : 麻煩各位好心的大大了(鞠躬 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.34.117
iyenn:推~~ 04/15 23:59
ruby791104:謝謝s大,我再去研究研究! 04/16 00:15