作者smartlwj (最後18天衝刺)
看板Grad-ProbAsk
標題Re: [理工] [線代]-eigenvalue證明&計算
時間Thu Apr 15 23:55:03 2010
※ 引述《ruby791104 (阿年:))》之銘言:
: 1.Show that A and A^T have the same eigenvalues. Do they necessarily have the
: same eigenvectors? Explain.
: 2.Let A be a 2 * 2 matrix. If tr(A) = 8 and det(A) = 12, what are the
: eigenvalues of A?
: 3.Let A be a nondefective n * n matrix with diagonalizing matrix X. Show that
: the matrix Y = (X^-1)^T diagonalizes A^T.
: 4.Let A be a diagonalizable matrix whose eigenvalues are all either 1 or -1.
: Show that A^-1 = A.
since A is diagonalizable, so there is P , P is invertible
such that P^(-1)AP =D, where D is diagonal matrix whose element are
all either 1 of -1
and note that D^2 = I => D^(-1)=D
so, A = PDP^(-1)
=> A^(-1) = PD^(-1)P^(-1) = PDP^(-1) = A.
應該是這樣囉
: 5.Find a matrix B such that B^2 = A.
: ┌ ┐
: | 2 1|
: A = | |
: |-2 -1|
: └ ┘
: 可以教我一下怎麼做嗎?
: 麻煩各位好心的大大了(鞠躬
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.114.34.117
→ iyenn:推~~ 04/15 23:59
推 ruby791104:謝謝s大,我再去研究研究! 04/16 00:15