看板 Grad-ProbAsk 關於我們 聯絡資訊
原文恕刪~ Q1:prove that the eigenvalue of a real symmetric matrix must be real Pf: 假設入為A的特徵根,則存在x不等於0使得Ax=入x T T T 2 => x A x = x 入 x = 入 x x = 入 || x || 另一方面 T T T T T T 2 x A x = x A x = (Ax) x = (入x) = 入 x x = 入 || x || 2 2 2 入 || x || = 入 || x || 且 || x || 不等於0 所以入屬於實數 ! Q2:Let A be a real symmetric matric. Then eigenvector associated with distinct eigenvalues are orthogonal. Pf: 假設x_1、x_2分別為A相對於入1、入2的特徵向量,且入1不等於入2 => Ax_1=入x_1 ,Ax_2=入x_2 題目所示之Distinct eigenvalues are orthogonal 即証 < x_1 , x_2 > = 0 入_1 < x_1 , x_2 > = < 入_1 x_1 , x_2 > = < Ax_1 , x_2 > T = < x_1 , A x_2 > = < x_1 , A x_2 > = < x_1 , 入_2 x_2 > = 入_2 < x_1 , x_2 > => (入_1 - 入_2 ) < x_1 , x_2 > = 0 因為入1不等於入2,所以 (入_1 - 入_2 )不等於0 故得< x_1 , x_2 > = 0 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.164.98.46