推 s0071988js:太感謝了f大我想起來怎解了,差點把學的還給工數老師 07/09 16:13
※ 引述《s0071988js (放肆 無禮 大膽!!!!)》之銘言:
: 這題是 87北科大通訊的線代
: _ _ _ _ _ _
: | -2 3 | | x1(t) | | x1''(t) |
: A =| | X(t)= | | X''(t)= | |
: |_ -6 7 _| |_x2(t) _| |_ x2''(t) _|
: _ _
: | 2+e^3t |
: ,G(t) = | |
: |_ 2+2e^3t _| ,Solve the system X''(t)=AX(t)+G(t)
: ---------
: 過程有點稍微簡略
: A之eigenvale :1,4
: _ _ _ _
: 取P=| 1 1 | 使得 A=PDP^-1,其中 D = | 1 0 |
: |_ 1 2 _| |_ 0 4 _|
: X''(t)=AX(t)+G(t)=PDP^-1(t)+G(t)
: _ _
: 令Y(t)= | y1(t) |=P^-1X(t) or X(t)=PY(t)
: |_ y2(t) _|
: =>Y''(t)=DY(t)+P^-1G(t)
: _ _ _ _ _ _ _ _
: => | y1''(t) | = | 1 0 | | y1(t) | +| 2 |
: |_ y2''(t) _| |_ 0 4 _| |_ y2(t) _| |_ e^3t_|
=> y1''= y1 + 2
y2''= y2 +e^3t
=> (D^2-1)y1 = 2
(D^2-4)y2 = e^3t
=> y1h = c1e^t+c2e^-t , y1p = -2 ∴y1=y1h+y1p=c1e^t+c2^-t -2
y2h = c3e^2t+c4e^-2t ,y2p = e^3t/5 ∴y2=y2h+y2p=c3e^2t+c4e^-2t + e^3t/5
當微方為非齊性,有齊性解(yh)和particular solution(yp)
解為兩項加總(y=yh+yp)
: =>y1(t)=c1e^t+c2^-t -2 //--------
: y2(t)=c3e^2t+c4e^-2t + e^3t/5 //請問這部份怎麼來的
: 小弟目前只會解這類型的微分方程
: EX
: y1''(t)=y1(t)
: USE 特徵方程式
: y^2-1=0
: =>y=1,-1
: 所以y1(t)=c1e^t+c2e^-t ,其中c1,c2為常數
: 希望有高手能夠為小弟解惑
--
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.152.151