看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《roud (對愛絕望)》之銘言: : y y'' = 2(y')^2 - 2 y' , y(0) = 1, y'(0) = 2 : ans: y = tan(x + π/4) : 拜託了~感激 大同小異吧 P=y' ,P' =y'' =P dP/dy P y dP/dy =2P^2 -2P (奇異解 P=0 =>y=1 ) y'=0 不符合 y'(0) = 2 不合 P 不等於0 約掉 ydP/dy =2(P-1) 1/ y dy = 1/2(P-1) dP ln y = (1/2) ln (P-1) +C 2 ln y= ln (P-1) +2C 2ln y = ln (P-1) +ln C1 y^2 = C1*(P-1) y^2 = C1* (y' -1) y(0) = 1, y'(0) = 2 1=C1*(2-1) ==>C1=1 y^2 = y' -1 dy/dx = y^2 +1 dx = 1/ (y^2 +1) dy x= arctan (y) + C2 y(0) = 1 0 = π/4 +C2 ===>C2 =-π/4 這邊會有1個會有 arctan (1)問題 tan k =1 k=π/4 +2nπ (n為整數) 或5π/4+2nπ (n為整數) 我習慣還是寫π/4 arctan (y) =x+π/4 ===>y= arctan(x+π/4) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.169.78.115 ※ 編輯: suker 來自: 118.169.78.115 (07/10 09:03)