看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《k0184990 (追隨夢想..)》之銘言: : dy x^2-2x+y^2+4y+5 : ----=------------------ : dx 2(xy+2x-y-2) : 這題我看了好久才看出來她有以下算法 : dy (x-1)^2+(y+2)^2 : ----=------------------ : dx 2(x-1)(y+2) : 然後設變數 : 但我想請問除了這方法,還有誰有其他的解法嗎?? --- M(x,y) dx + N(x,y) dy = 0 for M(x,y) = x^2 - 2x + y^2 + 4y + 5 N(x,y) = -2(xy + 2x - y - 2) ┌ My = 2y + 4 └ Nx = -2y - 4 假設積分因子 I(x,y) 滿足: (2y + 4)I + M*(Iy) = (-2y - 4)I + N*(Ix) 若 I = I(x) : (2y + 4)I = (-2y - 4)I - 2(xy + 2x - y - 2) * dI/dx → 4(y + 2)I = -2(x - 1)(y + 2) * dI/dx → 4I = -2(x - 1) * dI/dx or y=-2 解得 I(x) = C/(x-1)^2 (choose C=1) 所以存在一 f(x,y) , 使得 df = M*I dx + N*I dy → ┌ fx = (x^2 - 2x + y^2 + 4y + 5)/(x - 1)^2 ____(1) └ fy = -2(y + 2)/(x - 1) ____(2) 由 (2) 可知 f = -(y^2 + 4y)/(x - 1) + g(x) ____(3), g is a fun. of x → fx = (y^2 + 4y)/(x - 1)^2 + g'(x) 比較 (1) 式得 g'(x) = (x^2 - 2x + 5)/(x - 1)^2 = 1 + 4/(x - 1)^2 → g(x) = x - 4/(x - 1) 因此通解為 f(x,y) = C' , C' is const. → -(y^2 + 4y)/(x - 1) + x - 4/(x - 1) = C' by (3) ---- ps: 我自己的話,看到有圓錐曲線型態的多項式成分 會先嘗試做座標的平移/旋轉 (也就是原po列的第二條 eq.) 簡化 o.d.e. 再用自己熟悉的方法算 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.47.130