看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《yuxike (非人Zai)》之銘言: : 小弟又來了 : 每次都是棘手的題目(其實是花時間的題目) : X1"(t) = (-13/2)X1 + (5/2)X2 + 2[1-U(t-3)] : X2"(t) = (5/2)X1 + (-13/2)X2 : X1(0) = X2(0) = X1'(0) = X2'(0) = 0 : ANS: : X1(t)= (13/36) + (-1/4)cos2t + (-1/9)cos3t : -[(13/36) + (-1/4)cos2(t-3) + (-1/9)cos3(t-3)]U(t-3) : X2(t)= (5/36) + (-1/4)cos2t + (1/9)cos3t : -[(5/36) + (-1/4)cos2(t-3) + (1/9)cos3(t-3)]U(t-3) : 我可以用wronskian算出X2(s)... : 再逆轉換可得X2(t)與答案相符 : 但用X2(t)帶回原式,好像沒辦法藉消去法求出X1(t) : 而答案的X1(t)轉LAPLACE之後 : 跟我wronskian算出來的X1(s)不同... : 所以上來問看看,用什麼方法可以解出來 --- 我把 para. ( X1(t) , X2(t) ) 寫成 ( x(t) , y(t) ) 單純不想寫下標而已 XD ┌ x'' = (-13/2)x + (5/2)y + 2[1-u(t-3)] ____(1) └ y'' = (5/2)x + (-13/2)y ____(2) (1) + (2) : (x+y)'' = -4(x+y) + 2[1-u(t-3)] with (x+y)(0) = (x+y)'(0) = 0 可解得 x+y = m[1 - cos(2t)] - m{1 - cos[2(t-3)]}*u(t-3) ____(3) where m = (1/2) 相同的, (1) - (2): (x-y)'' = -9(x-y) + 2[1-u(t-3)] with (x-y)(0) = (x-y)'(0) = 0 可解得 x-y = n[1 - cos(3t)] - n{1 - cos[3(t-3)]}*u(t-3) ____(4) where n = (2/9) 因此由 (3)(4) 可解出: ┌ x(t) = (m+n)/2 - (m/2)cos(2t) - (n/2)cos(3t) │ -(1/2){ (m+n) - m*cos[2(t-3)] - n*cos[3(t-3)] }*u(t-3) │ └ y(t) = (m-n)/2 - (m/2)cos(2t) + (n/2)cos(3t) -(1/2){ (m-n) - m*cos[2(t-3)] + n*cos[3(t-3)] }*u(t-3) 把 (m,n) = (1/2 , 2/9) 帶入就是答案了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.47.130
yuxike:這解法好特別0.0 沒做過想不出來耶 感謝大大^^ 09/11 02:11