看板 Grad-ProbAsk 關於我們 聯絡資訊
題目: [ 1 2] [3] T Let A = [ 2 4] and b= [2] . Find a vector p such that b-p屬於N(A ) [-1 -2] [1] (一個3*2的矩陣) 給的解答: T 令W=R(A) 取p=proj b 則b-p屬於N(A ) w (b在W上的投影) T T 欲求p 先解 A Ax=A b [ 6 12][x1] = [ 6] => [x1]=[1-2*x2] [12 24][x2] [12] [x2] [ x2 ] [ 1 2] [ 2] 取p=A[1-2*x2] = [ 2 4]*[1-2*x2] = [ 2] [ x2 ] [-1 -2] [ x2 ] [-1] 我的答案: [ 1] [ 2] 因為 [ 2] 和 [ 4] 不為線性獨立 [-1] [-2] [ 1] 所以令 B= [ 2] [-1] T -1 T [ 1] 然後算 p=B(B B) B b = [ 2] [-1] 想請問這樣算的問題錯在哪裡 這章節的觀念蠻弱的 謝謝大家 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.40.77.163
juan19283746:但我把b令為(1,2,-1) 還是不能喔@@ 09/15 22:25
juan19283746:另外 這題解為唯一嗎? 09/15 22:25
cakeboy:這是唯一解 09/15 23:07