作者juan19283746 (小阮)
看板Grad-ProbAsk
標題[理工] [線代] 內積空間
時間Wed Sep 15 21:36:16 2010
題目:
[ 1 2] [3] T
Let A = [ 2 4] and b= [2] . Find a vector p such that b-p屬於N(A )
[-1 -2] [1]
(一個3*2的矩陣)
給的解答:
T
令W=R(A) 取p=proj b 則b-p屬於N(A )
w
(b在W上的投影)
T T
欲求p 先解 A Ax=A b
[ 6 12][x1] = [ 6] => [x1]=[1-2*x2]
[12 24][x2] [12] [x2] [ x2 ]
[ 1 2] [ 2]
取p=A[1-2*x2] = [ 2 4]*[1-2*x2] = [ 2]
[ x2 ] [-1 -2] [ x2 ] [-1]
我的答案:
[ 1] [ 2]
因為 [ 2] 和 [ 4] 不為線性獨立
[-1] [-2]
[ 1]
所以令 B= [ 2]
[-1]
T -1 T [ 1]
然後算 p=B(B B) B b = [ 2]
[-1]
想請問這樣算的問題錯在哪裡
這章節的觀念蠻弱的
謝謝大家
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.40.77.163
→ juan19283746:但我把b令為(1,2,-1) 還是不能喔@@ 09/15 22:25
→ juan19283746:另外 這題解為唯一嗎? 09/15 22:25
推 cakeboy:這是唯一解 09/15 23:07