看板 Grad-ProbAsk 關於我們 聯絡資訊
xy * y' = y^2 - x^2 I can't figure out why you can derive this answer, but I just provide my method to you. I think that this problem should multiply a integrating factor to obtain a exact ODE, not linear ODE. I use the traditional method the general advanced engineering mathematics book provide. This ODE can be rearranged to the form xydy=(y^2-x^2)dx --> (y^2-x^2)dx-xydy=0 change into exact form Mdx+Ndy=0 multiply a integrating factor μ --> (y^2-x^2)μdx-xyμdy=0 ∫f(x)dx use the formula μ=e dM/dy-dN/dx f(x)=_____________ d:partial differentiation N -->μ=x^(-3) --> this ODE becomes a exact DE -3 2 -1 -2 (x y -x )dx-(x y)dy=0 ψ=C is the solution -3 2 -1 M= dψ/dx = x y -x ψ=y^2*x^(-2)*(-1/2) +f(y) -2 -2 N=dψ/dy = -yx +f'(y) =-x y so f'(y)=0 f(y)=constant 2 -2 ψ=C = y x *(-1/2)+ C1 --> y = x *( - 2ln(x) + C )^(1/2) # ↑ ※ 引述《GoHarmonic (發出諧和波)》之銘言: : xy * y' = y^2 - x^2 : 這題如果單純用變數變換來解的話,一下子就可以解出來 : 解大概是 y = x *( 2ln(x) + C )^(1/2) : 可是我是想說,這題不知道能不能用線性的方式來解, : 就是找I積分因子的那個方法弄成線性來解 : 我解完之後,得到的答案跟前一個答案差很多 :             1 : 得到的是 y = CX * e^(--X^3 + XY^2) : 3 : 想請問大家,我這樣解出來的答案,對還是不對呢? : 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.70.199.84 ※ 編輯: Ertkkpoo 來自: 219.70.199.84 (10/02 01:56)