Classify each of the following differential equation by sating [成大機械]
the order, whether the equation is homongeneous or non-homongeneous,
and it is linear or nonlinear (in which variable.)
2 2 2 2
(a) dy/dx + 3x = 2(dy/dx)
2
(b) dy/dx + y/x = xy
x+y
(c) dy/dx = ───
x-y
2
(d) (3x + ycosx)dx + (sinx)dy = 0
2
(e) d(yu) = y du
----------------------小弟的問題是齊不齊次---------
m m-1
(c)小題,我是把它弄成xy'-yy'-x-y = 0 ,然後令 f(λx,λy,λ y')帶進去測
m=1,則ODE為齊1次。
解答是:以y為函數x為變數非齊次ODE
請問我哪邊假設錯了@@"
(d)小題出現cosx和sinx,就不會判斷了,請問應該要怎麼做?
解答是:以y為函數x為變數非齊次ODE
以x為函數y為變數齊次ODE
2
(e) 把原ODE整理一下,ydu + udy = y du
2
兩端同除du可得以y為函數u為變數的ODE: y + uy' = y
m m-1
令f(u,λy,λ y')帶入去測,m=0,則ODE齊0次
2
兩端同除dy可得以u為函數y為變數的ODE: yu'+ u = y u'
m m-1
令f(y,λu,λ u')帶入去測,算出一個m和m+1,m≠m+1,ODE非齊次
解答是:以y為函數u為變數齊次ODE
以u為函數y為變數齊次ODE ←怎麼會齊次@@?
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 134.208.10.231