看板 Grad-ProbAsk 關於我們 聯絡資訊
1.Use the change of variable x =1/t to determine the general solution of the differential equation. 4 3 3/x x y" + 2x y'- y = 8e -1/x 1/x 3/x ans:y = c1e + c2e + e [台大機械] -----------------小弟的解法---------- 2 1 8 3/x 原ODE寫成 y" + ── y' - ── y = ── e x x^4 x^4 2 1 令P(x) = ── , Q(x) = - ── x x^4 1 - ── Q(x) x^4 再令 ─── = ──── = A 取 A = -1 (z')^2 (z')^2 1 1 1 則 z'(x) = ── , z"(x) = -2 ── , z(x) = - ── x^2 x^3 x 1 2 1 -2 ── + ── ─── z" + Pz' x^3 x x^2 且令 ───── = ──────────── = 0 (z')^2 1 ── x^4 則原ODE可寫成 2 d y 4 -3z ─── - y = 8z e dz^2 -z z 1/x -1/x yh = c1e + c2e = c1e + c2 e 1 4 -3z yp = ──── 8z e D^2 -1 -3z 1 4 = 8e ────── z D^2 -6D + 8 -3z 1 3 7 2 15 3 31 4 4 = 8e [── + ── D + ── D + ─── D + ─── D +...] z 8 32 128 512 2048 = ...(感覺解答的yp有錯,不然就是我算錯了ORZ) 若照原題目令x=1/t的話要怎麼做? 2.Use the transformation z = sinx to solve [成大土木] 2 d y dy 2 ─── + (tanx) ── + (cos x)y = 0 dx^2 dx ans: y = c1cos(sinx) + c2sin(sinx) 這題我無法轉成常係數類型的,那應該怎麼做? 2 3 3.Find (x+y )y''' + (6yy')y" + 3y" +2y' [雲科環工] 1 3 c1x^2 ans: ──y + xy = ─── + c2x + c3 3 2 z 這題似乎不是齊次式,沒辦法令y = e 去做吧? 那該怎麼算 麻煩高手們了@@" -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 134.208.10.231