看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《zendla (夏夜薄荷)》之銘言: : 2 3 : 3.Find (x+y )y''' + (6yy')y" + 3y" +2y' [雲科環工] : 1 3 c1x^2 : ans: ──y + xy = ─── + c2x + c3 : 3 2 : z : 這題似乎不是齊次式,沒辦法令y = e 去做吧? 那該怎麼算 麻煩高手們了@@" xy''' + y^2 y''' + 6yy'y'' + 3y'' + 2(y')^3 = 0 (1) + (2) + (3) + (4) + (5) = 0 ∫(1) => ∫ xy''' dx = xy'' - ∫y''dx ∫[(1) + (4)] => xy'' + 2 ∫y''dx = xy'' + 2y' (6) (7) ∫(6) => ∫ xy'' dx = xy' - ∫y'dx ∫[(6) + (7)] => xy' + ∫y'dx = xy' + y (8) (9) ∫(8) = > ∫ xy' dx = xy - ∫y'dx ∫[(8) + (9)] => xy => ∫∫∫ [(1) + (4)] (dx)^3 = xy ∫(2) => ∫y^2 y'''dx = y^2 y'' - ∫2yy'y''dx ∫[(2) + (3)] => y^2 y'' + 4∫yy'y''dx (10) (11) (11) => 令 u = yy', v'=y'' u' = (y')^2 + yy'', v=y' ∫yy'y''dx = y(y')^2 - ∫(y')^3dx - ∫yy'y''dx =>∫yy'y''dx = [y(y')^2]/2 - [∫(y')^3dx]/2 => ∫[(2) + (3)] = y^2 y'' + 2y(y')^2 - 2∫(y')^3dx => ∫[(2) + (3) + (5)] = y^2 y'' + 2y(y')^2 (12) (13) ∫(12) => ∫y^2 y''dx = y^2 y' - ∫ 2y(y')^2 dy ∫[(12) + (13)] = y^2 y' ∫y^2 y'dx = y^3 - ∫2y^2 y'dx => ∫y^2 y'dx = y^3/3 => ∫∫∫[(2) + (3) + (5)](dx)^3 = y^3/3 右邊積分三次補三個積分常數 => C1 x^2/2 + C2 x + C3 => xy + y^3/3 = C1 x^2/2 + C2 x +C3 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.250.7.46
zendla:看到一半學術網路一直斷= = 11/17 12:28