看板 Grad-ProbAsk 關於我們 聯絡資訊
1. Let X be a discrete random variable whose range is the nonnegative integers . Show that ∞ EX = Σ (1-Fx(k)) , where Fx(k) = P(X≦k) k=0 2. A random variable X is defined by Z = logX, where E(Z)=0 Is E(X) greater than ,less than , or equal to 1 ? 3. Does a distribution exist for which Mx(t)=t/(1-t),|t|<1, If yes ,find it ,if no ,prove it ? -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.116.96.51
stevegood:第一題觀念上可以寫幾項來看出,嚴謹的數學式要小技巧 11/29 23:46
stevegood:第二題隨便舉個例子好像是大於... 11/29 23:48
hookylen:第三題是不是卡方一 12/02 19:14
dawn90196:第二題我以為是等於耶@@" 12/02 21:42
dawn90196:第二題是大於等於 E(X)=E(e^Z)>=e^E(Z)=e^0=1 12/09 21:10
dawn90196:根據Jensen's不等式 12/09 21:11