看板 Grad-ProbAsk 關於我們 聯絡資訊
題目是這樣的 → If a vector F is given by → → → → F = (x^2 + y^2 + z^2)^n * (x i + y j + z k ) → find ▽^2 F method Ⅰ. → d^2 d^2 d^2 → ▽^2 F = (------ + ------ + ------) F dx^2 dy^2 dz^2 d → → → → 其中 ---- F = 2nx * (x^2 + y^2 + z^2)^(n-1) * (x i + y j + z k ) dx → + (x^2 + y^2 + z^2)^n i d^2 → → → → => ------ F = 2n * (x^2 + y^2 + z^2)^(n-1) * (x i + y j + z k ) dx^2 → → → + 2nx * (n-1) * (x^2 + y^2 + z^2)^(n-2) * 2x * (x i + y j + z k) → + 2nx * (x^2 + y^2 + z^2)^(n-1) i → + n * (x^2 + y^2 + z^2)^(n-1) * 2x i → → → → → 令 r = x i + y j + z k , r = | r | d^2 → → → => ------ F = 2n * r^(2n-2) r + 4n(n-1) * x^2 * r^(2n-4) r dx^2 → + 4n * r^(2n-2) * x i d^2 d^2 d^2 → 故所求 = (------ + ------ + ------) F dx^2 dy^2 dz^2 → → = 6n * r^(2n-2) r + 4n(n-1) * (x^2 + y^2 + z^2) * r^(2n-4) r → → → + 4n * r^(2n-2) * (x i + y j + z k ) → = 2n * (2n + 3) * r^(2n-2) r -- method Ⅱ. → → F = r^(2n) r → → ▽^2 F = ▽.▽ F → = ▽.▽[r^(2n) r ] → → = ▽.{ ▽[r^(2n)] r + r^(2n) ▽ r } → → = ▽.[ 2n * r^(2n - 1) ▽r r + r^(2n) ▽ r ] → r → →→ →→ →→ 其中 ▽r = --- , ▽ r = I = i i + j j + k k r → → → => 原式 = ▽.[2n * r^(2n - 2) r r + r^(2n) ▽ r ] → → → → = 2n * ▽[r^(2n - 2)].r r + 2n * r^(2n - 2) ▽.r r → → → → + 2n * r^(2n - 2) r ▽.r + ▽[r^(2n)].▽ r + r^(2n) ▽.▽ r → r → → → = 2n(2n - 2) * r^(2n - 3) * ---.r r + 2n * r^(2n - 2) * 3 r r → → r → + 2n * r^(2n - 2) r * 3 + 2n * r^(2n - 1) * ---.▽ r + 0 r → → → = 4n(n-1) * r^(2n - 2) r + 12n * r^(2n - 2) r + 2n * r^(2n - 2) r → = 2n(2n + 5) * r^(2n - 2) r 解答證明 method Ⅰ 的答案才是對的 想請問一下 method Ⅱ 當中步驟有哪裡有錯呢? 感謝各位 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.133.34 ※ 編輯: endlesschaos 來自: 114.34.133.34 (12/02 23:26)
ntust661:沒有正規化 12/03 19:33
ntust661:記得極座標的Laplacian 12/03 19:33
endlesschaos:可以再解釋得清楚一點嗎?謝謝 12/03 20:47