看板 Grad-ProbAsk 關於我們 聯絡資訊
: 至於 (c) 小題我看題應該是說用 圓形 或 二次方程式 去逼近那個多邊形, : 去求 least square, 但我就不會了 XD 以下是我從林緯老師的講義打上來的供你參考 ⊙ ⊙ ▽ 4 2 2 1/2 1.欲求c0 c1 c2 使 E = [ Σ (c0 + c1xi + c2xi - yi) ] 為最小 i=1 令 A= [ 1 x1 x1^2 ] = [ 1 0 0 ] [ ] [ ] [ 1 x2 x2^2 ] [ 1 1 1 ] [ ] [ ] [ 1 x3 x3^2 ] [ 1 1 1 ] [ ] [ ] [ 1 x4 x4^2 ] [ 1 -1 1 ] X= [ c0 ] [ c1 ] [ c2 ] b= [ y1 ] = [ -1/2 ] [ y2 ] [ 0 ] [ y3 ] [ 1 ] [ y4 ] [ 0 ] T T 則欲求 x 使|| Ax-b ||為最小,相當於解A Ax = A b, T -1 T -1 而因為 A 行獨立,故 x = (A A) A b = [ 4 1 3 ] [ 1 1 1 1 ] [-1/2 ] [ 1 3 1 ] * [ 0 1 1 -1] * [ 0 ] [ 3 1 3 ] [ 0 1 1 1 ] [ 1 ] [ 0 ] [-4 ] = 1/8 * [ 2 ] [ 6 ] [ 0 ] 又誤差為|| Ax - b || = || [ 1/2 ] || [-1/2 ] [ 0 ] = (√2)/2 2 2 2 2. 設所求 least square circle 為 (x-a) + (y-b) = r , a,b,r 為待求常數, 4 2 2 2 2 則 a,b,r 須滿足 Σ [ r -(xi-a) - (yi-b) ] 為最小 i=1 其中,r^2 - (xi-a)^2 - (yi-b)^2 = 2axi + 2byi + (r^2 - a^2 - b^2) - xi^2 - yi^2 為方便計算,令(r^2 - a^2 - b^2) = c, 令 A= [ 2x1 2y1 1 ] = [ 0 -1 1 ] [ ] [ ] [ 2x2 2y2 1 ] [ 2 0 1 ] [ ] [ ] [ 2x3 2y3 1 ] [ 2 2 1 ] [ ] [ ] [ 2x4 2y2 1 ] [-2 0 1 ] X= [ a ] [ b ] [ c ] b= [ x1^2 + y1^2 ] = [ 1/4 ] [ x2^2 + y2^2 ] [ 1 ] [ x3^2 + y3^2 ] [ 2 ] [ x4^2 + y4^2 ] [ 1 ] T T 則欲求 x 使|| Ax-b ||為最小,相當於解A Ax = A b, T -1 T -1 而因為 A 行獨立,故 x = (A A) A b = [ 12 4 2 ] [ 0 2 2 -2 ] [ 1/4 ] [ 4 5 1 ] * [-1 0 2 0 ] * [ 1 ] [ 2 1 4 ] [ 1 1 1 1 ] [ 2 ] [ 1 ] [ -1 ] = 1/80 * [ 46 ] [ 74 ] 而其誤差為|| Ax-b || = (√10)/20 ∵ (√10)/20 < (√2)/2 ∴ 圓比較近似 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.47.127.97
ntust661:推= =! 12/10 07:06
zain523:原來如此啊 ~.~ 12/10 14:15