看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《aj0938 ()》之銘言: : Let X(t) be a zero-mean, stationary, Gaussian process with autocorrection : function Rx(τ). The process is applied to a square-law device,which is : 2 : defined by the input-output relation Y(t) = X(t) : Find the autocovariance function of Y(t) (i.e.,in terms of Rx(τ))? ^^^^^^^^^^^^^^ : 2 2 : 這題算一算需要算到E[X(t1)X(t2)]就卡住不會算了 : 請高手指點一下,感謝 Cov[Y(t1),Y(t2)] = E[Y(t1)Y(t2)] - E[Y(t1)]E[Y(t2)] 2 2 2 2 = E[X(t1)X(t2)] - E[X(t1)]E[X(t2)] 2 2 2 = E[X(t1)X(t2)] - [R(0)] 2 2 X(t1) ~ Gauss(0,a ) where a = R(o) 2 2 X(t1),X(t2) ~ jointGauss(0,0,a, a ,ρ) Cov(X(t1),X(t2)) E[X(t1)X(t2)] R(τ) and ρ = -------------------- = --------------- = ------- R(0) R(0) R(0) the MGF of X(t1),X(t2) is 1 2 2 2 2 2 M (t1,t2) = exp---[a t1 + a t2 + 2ρa t1t2] X1,X2 2 (by Tayler Expansion) 2 2 2 2 a t1 a t2 2 = [1+ ----- + ... ][1 + ------ + ...][1 + ρa t1t2 + ...] 2 2 2 2 we want to determine the value E[X(t1)X(t2)] 相當於算 2 δ M(t1,t2) -------------- | δt1δt2 | t1=t2=0 2 2 1 2 2 2 1 2 2 比較係數 E[X(t1)X(t2)] = ---ρa a (2)(2) + ----(2)(2)a a 2 2!2! 2 2 2 2 2 = 2ρa a + a a 2 R(τ) 2 2 = 2(--------)R(0) + R(0) 2 R(0) 2 2 = 2R(τ) + R(0) 2 2 2 ∴ Cov(Y(t1),Y(t2))= E[X(t1)X(t2)] - R(0) 2 2 2 = [2R(τ) + R(0)] - R(0) 2 = 2R(τ) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ※ 編輯: ting301 來自: 118.160.68.40 (12/15 23:47)
aj0938:看懂了,感謝 12/16 08:35