看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《asdf322505 ()》之銘言: : 2√xy-y : y'=------------ : x : 1 : ANS;√y =√x( 1 - ----) : cx : 誰能交交我該怎麼算 : 我算答案怪怪的 原式: y' = 2[x^(-1/2)]y^(1/2) - x^(-1)y y' + x^(-1)y = 2[x^(-1/2)]y^(1/2) ...(★)→ Bernoulli's form Let u = y^[1-(1/2)] = y^(1/2) , that is, y = u^2 , dy/du = 2u by Chain rule dy/dx = (dy/du) * (du/dx) = 2u(du/dx) substuting into (★) 2u(du/dx) + x^(-1)u^2 = 2[x^(-1/2)]u Dividing by 2u:(du/dx) + (1/2)x^(-1)u = [x^(-1/2)] →Linear ODE Integrator factor I(x) = exp[∫(1/2)x^(-1)dx] = x^(1/2) After multiplying integrator factor I(x) d ---[x^(1/2)u] = 1 , x^(1/2)u= x + c dx u = y^(1/2) = x(1/2) + cx(-1/2) ∴ y^(1/2) = x(1/2) [1-cx^(-1)] 有錯還煩請高手不吝於指正 <(_ _)> -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.152.100