看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : 假設S為6個正整數的集合,其最大值為14 : 證明S的所有非空子集的元素和不可能皆不同 : 謝謝 Let S' denotes a subset of S and Sum(S') sums the values of elements in S. 1<= Sum(S') <= 14 + 13 + 12 +11 +10 + 9 = 69 , and |power set(S)-{}| = 2^6 -1 = 63. Now it's reasonable for Sum(S'). But if we look at the S' which has at most 5 cardinality. 1<= Sum(S') <= 14 + 13 + 12 +11 +10 +9 =60, ans |power set(S)-{}-S|=62 It's contradictive for that 62 < 60!! So, we know it is impossible that any sums of two nonempty subset can be distinct. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 59.126.187.85 ※ 編輯: privatewind 來自: 59.126.187.85 (12/19 17:30) ※ 編輯: privatewind 來自: 59.126.187.85 (12/19 17:31)
hunter0904:是14+13+12+11+10? 你多打一個9 12/19 20:56