看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《peropero1 (嗚嗚~~~~)》之銘言: : 想對個答案跟觀念 麻煩版上大大 謝謝 : €表示 屬於 : Suppose A is an n*n matrix with the property that : A^2=A. : Let a1,...,an€R^n, be the column vectors of A and : A1,A2,...An be€R^n, be the row vectors of A. : Let C(A)=span(a1,...,an) and R(A)=span(A1,...An) be the column/row space of A : Define : E(A)={x€R^n|x=Ax} : F(A)={x€R^n|x=u-Au for some u€R^n} : Find the following four sets: : C(A)∩E(A), N(A)∩F(A),C(A)∩N(A), C(A)+N(A) : Ans: : C(A)∩E(A):E(A) : 對x€C(A)∩E(A),x€C(A)且x€E(A), : x€Ax且使得x=Ax, so C(A)∩E(A)=E(A) 這個應該寫C(A) or E(A)都對 : N(A)∩F(A):E(A) : x為Ax=0且x=u-Au,so u-Au=0 →u=Au, so N(A)∩F(A)=E(A) for each x€N(A) => Ax = 0 => x-Ax = x => x € F(A) 所以應該是F(A) : C(A)∩N(A):N(A) for each x€C(A)∩N(A) =>exists u€R^n Au = x∩ Ax=0 => Ax = A^2u = Au = x = 0 所以應該是{0} : C(A)+ N(A):C(A) 因為dim(C(A)∩N(A)) = 0 => C(A)+N(A) = R^n 有錯請指教!! -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.244.142