看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《jenny200638 (J大)》之銘言: : 這是98交大生資的題目 : 想要對答案但是同學都沒有這個領域的 : 所以就希望有人可以一起練習看看囉!! : 只有四題是機率,我題目複製上來好了!! : http://ppt.cc/jW@P 覺得PDF比較好讀的可以點連結! : 其實在寫的時候也覺得不難,但是本身能力不好所以想謹慎一點>< : 1. A box contains 3 red and 5 blue balls. : (a) Balls are drawn at random without replacement until a red ball is drawn. : What is the probability that exactly 3 drawn are required. : (b) Balls are drawn at random with replacement until a red ball is drawn. : What is the probability that exactly 3 drawn are required. : (c) Balls are drawn at random with replacement 6 times. What is the : probability that 3 red balls and 3 blue balls are drawn in these 6 times. : 2. Let X, Y be independently uniformly distributed over (0, 1). : Define Z = X^2, and W = max(X,Y). : (a) Find distribution function of Z. : (b) Find E(Z). : (c) Find distribution function of W. : (d) Find E(W). : 3. Let the joint density function of random variables X and Y be given by : f (x,y) = { 2 if 0≦y≦x≦1 : 0 o.w : (a) Calculate the marginal density function of X. : (b) Calculate P(2X+2Y < 3). : 4. Let XI, X2, . . ., Xn be a random sample of size n from a continuous : distribution : function F with meanp and variance 02. Let the sample mean : (a) What are E(X) and Var ( X) : (b) Let u =loo, 變異數=40, n=90. Use central limit theorem to approximate : P( 99 < X < 101 ). (Express your solution by using the standard normal : distribution function ) : 我算出的答案依序: : 1.(a) 5/28 : (b) 75/256 : (c) 0.01287 : 2.(a) f(z)=1/2z^(-1/2) , 0<=z<=1 : (b) 1/3 : (c) 知道是順序統計量,但算到一半就卡= = : (d) 同上 : 3.(a) 2x ,0<=x<=1 : (b) 1/2 : 4.(a) 老實說我不懂這裡要寫什麼= = u? : (b) 0.8664 : 希望有人一起討論討論>< 補充第二題的C&D (C) 從累積分布函數出發,Fz(z)=p{max(X,Y)小於等於z}=p{x小於等於z}*p(y小於等於y) (因為獨立) 2 =z 0<z<1 由於題目是求分布函數 0 ,if z<0 2 ANS: Fz(z)= z ,if 0<z<1 1 ,if z>1 期望值我就用密度函數作 fz(z)=2z 0<z<1 ANS: E[Z]=2/3 如果有錯還請多多指教...一大早起床頭腦還有些遲鈍XD -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 122.117.119.191
jenny200638:感謝大大 我再將書讀熟一次!! 01/23 23:52