看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《wolf0000 (小狼)》之銘言: : Let V be a vector space,and W1 and W2 be two subspace of V. : Is it possible that the intersection of W1 and W2, W1∩W2 = ψ, : where ψ denotes the empty set. : 解答是說因為W1跟W2為向量子空間,所以零向量都包含在W1跟W2裡, : 所以零向量屬於W1跟W2的交集, 故W1∩W2 = ψ不可能成立。 : 前面的觀念我都懂...但是empty set它裡面的元素不就是零嗎? No... empty set is just empty,there `s nothing. But zero element means the identity such like 0 for addition,1 for multiplication. So,two of the W1 and W2 have zero element if they are subspace of V. W1∩W2 != ψ : 為什麼有零向量不是empty set??? 這邊觀念有點模擬~"~ : 肯請高手解惑! 感謝:) ps. span(ψ)={0} -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.71.209.172
wolf0000:那span(ψ)={0}的0是代表0元素還是0向量呢???我搞混了= = 01/28 15:33
wolf0000:所以如果題目是問說W1∩W2 =span(ψ),是成立嗎? 01/28 15:33
privatewind:true, 直和的兩個子空間 就是這樣 01/28 17:22
cha122977:zero vector 01/28 17:46
wolf0000:瞭解了!!感謝大家的回應!! 01/28 18:15