看板 Grad-ProbAsk 關於我們 聯絡資訊
提供另一種想法 從幾何上來看 Let L be a linear transformation of the reflection about ax+by=0 It is easy to see that Lv= 1*v for all v on the line ax+by=0 Lv=-1*v for all v on the line bx-ay=0 which say that 1 is an eigenvalue and [b,-a] is an eigenvector -1 is an eigenvalue and [a, b] is an eigenvector Note that [b,-a] and [a, b] span R^2 thus P^(-1) A P = D so A = P D P^(-1) 1 [b a] [1 0][b -a] A = ------- (自己展開一下) a^2+b^2 [-a b] [0 -1][a b] R(A) = span{[b,-a] , [a, b]} N(A) = {[0,0]} -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.138.13.38
cakeboy:R(A)basis可以寫成(1,0) (0,1) 02/02 14:30
sm008150204:是沒錯 因為span整個 R^2 謝你你的補充 02/02 14:37