看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《raymond168 (raymond168)》之銘言: : 附上連結: : http://ppt.cc/8f(T : 想問的題號分別為:1、2、3(b)、4 : 其中3(b)為第3題的b小題 : 拜託板上各位高手幫忙解惑 : 謝謝 1. Suppose h(t) is a nondecreasing continuous function for t ≧ 0 . t H(t) Let H(t) = ∫ h(x) dx . Is ---- nondecreasing for t > 0 ? 0 t Justify your answer . (10%) t sol: H(t) = ∫ h(x) dx => H(0) = 0 0 ∵ h(t) is a nondecreasing continuous function for t ≧ 0 t ∴ H(t) = ∫ h(x) dx is a differentiable function for t ≧ 0 0 => H(t) is a continous function for t ≧ 0 ∵ H is continous on [0,t] and differentiable on (0,t) for t ≧ 0 ∴ by MVT , there exists c belonging to (0,t) such that H(t) - H(0) = (H'(c))(t - 0) => H(t) = (t)(h(c)) for 0 < c < t ∵ h(t) is a nondecreasing continuous function for t ≧ 0 ∴ h(c) ≦ h(t) for 0 < c < t => (t)(h(c)) ≦ (t)(h(t)) => H(t) ≦ (t)(h(t)) -------(*) H(t) Let g(t) = ------ t (H'(t))(t) - H(t) Then g'(t) = ------------------- t^2 (t)(h(t)) - H(t) = ------------------ ≧ 0 for t > 0 (From (*)) t^2 H(t) ∴ g(t) = ------ is nondecreasing for t > 0 t -- 本週抽中:安 心 亞 本週最心碎:吳 怡 霈 本週最亮眼:王 薇 欣 動園木萬社萬醫辛 麟六犁科大大忠復南東中國松機劍路西港內大公葫東南軟園南展 物 柵芳區芳院亥 光技樓安孝興京路山中山場湖墘湖湖園洲湖港體區港覽 ○ ○○ ○ ○ ○◎◎ ◎ ○○○○ ○◎○ ◎館 王樺邵艾絲小樺張甯莎王欣李慧啾豆妹安亞吳霈廖嫻徐翊舒虎可蜜兒蔓小劉萍 林玲 彩 庭莉 欣 鈞 拉啾花 心 舒牙樂雪 蔓蔓秀 志 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.36.165.222
raymond168:感謝L大的回答!! 02/05 22:55