作者doom8199 (~口卡口卡 修~)
看板Grad-ProbAsk
標題Re: [理工] [線代]交大100
時間Sat Feb 19 19:37:40 2011
※ 引述《death888 (ZZZZ)》之銘言:
: 9.Suppose A:3x3 has three distinct eigenvalues 0,1,3 with corresponding
: eigenvectors u,v,w. 何者敘述正確
: A.The rank of A must be 2
true
: B.The matrix A^2-I is invertible
false
observe (A^2 - I)v = AAv - v
= A(1v) - v
= 1(v) - v
= 0
since (A^2 - I) has zero eigenvalue
(A^2 - I) is not invertible
: C.v and w must span the column space of A
true
for any c1、c2 εR
c1*v + c2*w = c1*Av + c2*A(w/3)
= A[c1*v + (c2/3)w]
so span{v,w} € Im{A} ____(1)
on the other hand
for any yεIm{A} , there exist x in R^3, s.t. y = Ax
since span{u,v,w} = R^3
there exists c3、c4、c5 εR , s.t. x = c3*u + c4*v + c5*w
so y = A(c3*u + c4*v + c5*w)
= c4*v + 3*c5*w
it implies Im{A} € span{v,w} ____(2)
by (1)(2) , span{v,w} = Im{A}
: D.The least squares error of Ax=2v+3w+u must be ∥u∥^2
true
2
e = min ∥(2v+3w+u) - (c1*v + c2*w)∥
c1,c2
when (c1,c2)=(2,3) , e has min=∥u∥^2
: 10.Suppose A:3x3 = xy^T is rank 1 matrix.何者敘述正確
: A.The eigenvector matrix S must be invertible
false
consider x=[ 1, 0, 0]
y=[ 0, 1, 0]
then A has zero eigenvalue with algebraic multiplicities = 3
but corresponding geometric multiplicities = 2
: B.A must have one non-zero eigenvalue
false
as same as part (A)
: C.When A is facotrized by SVD into UΣV^T,the only non-zero singular value
: is ∥x∥∥y∥
true
(A^T)A = (yx^T)(xy^T)
= <x,x>(yy^T)
then (A^T)Ay = <x,x>(yy^T)y
= <x,x>*<y,y>y
→ (A^T)A has an eigenvalue = <x,x>*<y,y> with respect to
eigenvector = y
so A has a singular value = ∥x∥∥y∥
( and only one non-zero singular value since rank(A)=1 )
: D.When A is factorized by SVD into UΣV^T,U must include x/∥x∥ as
: one of its column vectors
false
so as -x/∥x∥
: 請問這兩題要怎麼選 腦袋轉不過來
: 覺得觀念考好多orz
: 順便再問幾個選項
: 1. A,B,A+B,都是n*n可逆矩陣, then A^-1 +B^-1 也可逆
: 我是選FALSE 總覺得舉得出反例 不過想不到
應該是對的
set X is an inverse matrix of A^(-1) + B^(-1)
then [A^(-1) + B^(-1)]X = I ( I € C^(nxn) )
so ┌ [A^(-1)]X + Y = I ____(1) by introducing a matrix Y
└ Y = [B^(-1)]X ____(2)
by (2), X = BY
then by (1), [A^(-1)]X + Y = I
→ [A^(-1)]BY + Y = I
→ BY + AY = A
→ Y = [(A+B)^(-1)]A since (A+B) is invertible
hence X = BY
= B[(A+B)^(-1)]A
: ┌ ┐
: 2.If │a b c│
: det│d e f│=7
: │1 3 5│
: └ ┘
: 第三列改1 0 1的時候 det為9, then 第三列改1 6 9的時候=5
: (排版麻煩 我用文字敘述)
: true or false?
: 我對題目給的兩種展開 然後把三種coefficient用變數A B C代換
: 但這樣也只有兩條方程式 三個未知數解不出來 有別的辦法嗎?
這題不需要展開
determinant 本身可視 每列 row vector 為 linear function
所以:
│ a b c │ │ a b c │ │ a b c │
│ d e f │ = 2*│ d e f │ - │ d e f │
│ 1 6 9 │ │ 1 3 5 │ │ 1 0 1 │
= 2*7 - 9
= 5
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.47.130
推 daniel770624:好詳細... 02/19 19:46
推 death888:第9題的A是怎麼看的 我只想到eigenvalue 有0 所以不可逆 02/19 20:36
→ death888:RANK一定小於3 02/19 20:37
推 SkullMaster:我猜是A=P^-1DP ,A~D,相似保rank 02/19 20:41
→ cha122977:dim[V(0)]=1=nullity(A) Rank(A)=3-nullity(A)=2 02/19 20:41
推 death888:了解了 感謝! 02/19 20:43
推 bahamut5461:口卡口卡修 神人... 01/01 23:06
推 ai305428d:推 02/15 20:27