看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《death888 (ZZZZ)》之銘言: : 9.Suppose A:3x3 has three distinct eigenvalues 0,1,3 with corresponding : eigenvectors u,v,w. 何者敘述正確 : A.The rank of A must be 2 true : B.The matrix A^2-I is invertible false observe (A^2 - I)v = AAv - v = A(1v) - v = 1(v) - v = 0 since (A^2 - I) has zero eigenvalue (A^2 - I) is not invertible : C.v and w must span the column space of A true for any c1、c2 εR c1*v + c2*w = c1*Av + c2*A(w/3) = A[c1*v + (c2/3)w] so span{v,w} € Im{A} ____(1) on the other hand for any yεIm{A} , there exist x in R^3, s.t. y = Ax since span{u,v,w} = R^3 there exists c3、c4、c5 εR , s.t. x = c3*u + c4*v + c5*w so y = A(c3*u + c4*v + c5*w) = c4*v + 3*c5*w it implies Im{A} € span{v,w} ____(2) by (1)(2) , span{v,w} = Im{A} : D.The least squares error of Ax=2v+3w+u must be ∥u∥^2 true 2 e = min ∥(2v+3w+u) - (c1*v + c2*w)∥ c1,c2 when (c1,c2)=(2,3) , e has min=∥u∥^2 : 10.Suppose A:3x3 = xy^T is rank 1 matrix.何者敘述正確 : A.The eigenvector matrix S must be invertible false consider x=[ 1, 0, 0] y=[ 0, 1, 0] then A has zero eigenvalue with algebraic multiplicities = 3 but corresponding geometric multiplicities = 2 : B.A must have one non-zero eigenvalue false as same as part (A) : C.When A is facotrized by SVD into UΣV^T,the only non-zero singular value : is ∥x∥∥y∥ true (A^T)A = (yx^T)(xy^T) = <x,x>(yy^T) then (A^T)Ay = <x,x>(yy^T)y = <x,x>*<y,y>y → (A^T)A has an eigenvalue = <x,x>*<y,y> with respect to eigenvector = y so A has a singular value = ∥x∥∥y∥ ( and only one non-zero singular value since rank(A)=1 ) : D.When A is factorized by SVD into UΣV^T,U must include x/∥x∥ as : one of its column vectors false so as -x/∥x∥ : 請問這兩題要怎麼選 腦袋轉不過來 : 覺得觀念考好多orz : 順便再問幾個選項 : 1. A,B,A+B,都是n*n可逆矩陣, then A^-1 +B^-1 也可逆 : 我是選FALSE 總覺得舉得出反例 不過想不到 應該是對的 set X is an inverse matrix of A^(-1) + B^(-1) then [A^(-1) + B^(-1)]X = I ( I € C^(nxn) ) so ┌ [A^(-1)]X + Y = I ____(1) by introducing a matrix Y └ Y = [B^(-1)]X ____(2) by (2), X = BY then by (1), [A^(-1)]X + Y = I → [A^(-1)]BY + Y = I → BY + AY = A → Y = [(A+B)^(-1)]A since (A+B) is invertible hence X = BY = B[(A+B)^(-1)]A : ┌ ┐ : 2.If │a b c│ : det│d e f│=7 : │1 3 5│ : └ ┘ : 第三列改1 0 1的時候 det為9, then 第三列改1 6 9的時候=5 : (排版麻煩 我用文字敘述) : true or false? : 我對題目給的兩種展開 然後把三種coefficient用變數A B C代換 : 但這樣也只有兩條方程式 三個未知數解不出來 有別的辦法嗎? 這題不需要展開 determinant 本身可視 每列 row vector 為 linear function 所以: │ a b c │ │ a b c │ │ a b c │ │ d e f │ = 2*│ d e f │ - │ d e f │ │ 1 6 9 │ │ 1 3 5 │ │ 1 0 1 │ = 2*7 - 9 = 5 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.47.130
daniel770624:好詳細... 02/19 19:46
death888:第9題的A是怎麼看的 我只想到eigenvalue 有0 所以不可逆 02/19 20:36
death888:RANK一定小於3 02/19 20:37
SkullMaster:我猜是A=P^-1DP ,A~D,相似保rank 02/19 20:41
cha122977:dim[V(0)]=1=nullity(A) Rank(A)=3-nullity(A)=2 02/19 20:41
death888:了解了 感謝! 02/19 20:43
bahamut5461:口卡口卡修 神人... 01/01 23:06
ai305428d:推 02/15 20:27