看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《aacvbn (u)》之銘言: : for the following problem, find ,respectively : a differential equation having the given function : as a general solution. : x x x : y(x)=e { Acos(2x)+Bsin(2x) } + --- e sin(2x) : 4 : thanks. y'' + a1 y' + a0 y = 0 x yh = e [ A cos2x + B sin2x ] x(1+2i) x(1-2i) = A* e + B* e 代入 O.D.E. 2 2 A* ( (1 + 2i) + a1 (1 + 2i) + a0 ) + B* ( (1 - 2i) + a1(1 - 2i) + a0 ) = 0 A , B 不恆為零,故 -3 + 4i + a1 + 2i a1 + a0 = 0 -3 - 4i + a1 - 2i a1 + a0 = 0 a1 + a0 = 3 2 a1 = -4 a1 = -2 , a0 = 5 O.D.E. => y'' - 2y' + 5y = 0 特解 x x yp = ── e sin(2x) 代入 O.D.E. 4 x (1+2i)x = Im{── e } 4 1 (1+2i)x 2 (1+2i)x ── [ 0 + 2*(1 + 2i) e + x(1 + 2i) e ] = y'' 4 2 + 4i x(-3 + 4i) 1 (1 + 2i)x (1+2i)x ── [ e + x (1 + 2i) e ] = y' 4 1 (1 + 2i)x ── x e = y 4 1 (1+2i)x y'' - 2y' + 5y = ──(2+4i-3x+4ix-2(1+x+2ix)+5x ) e 4 1 x = ───(2+4i-3x+4ix-2-2x-4ix+5x) e (cos(2x)+isin(2x)) 4 x e = ───([2-3x-2-2x+5x]+i[4+4x-4x])(cos2x + isin2x) 4 x e = ───(4icos2x)(Imagine part) 4 x = e cos2x x y'' -2y' + 5y = e cos2x -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.45.228.96 m = 1 ±2i 2 m-1 = ±2i , m - 2m + 1 = -4 用看的 y''-2y'+5y = 0 特解用看的 x x 1 ── e sin(2x) = ─── f 4 L(D) x x f = L(D) ── e sin(2x) 4 x x = e L(D+1) ── sin2x 4 x 2 x = e [(D+1) -2(D+1) + 5] ── sin2x 4 x 2 x = e [D + 4] ── sin2x 直接展開也可以 4 or 1 x ─── [cos2x] = ── sin2x D^2+4 4 x f = e cos2x -- ※ 編輯: ntust661 來自: 114.45.228.96 (03/20 01:24)
aacvbn:3Q 03/20 14:53