看板 Grad-ProbAsk 關於我們 聯絡資訊
y※ 引述《foodyoytk (元)》之銘言: : 如題: A periodic function f(x)=f(x+T) is approximated by the finite sum of : k : it's Fourier series f(x)=Pk(x)=Ao+Σ[Ancos(nWox)+Bnsin(nWox)] : n=1 : Wo=2π/T and the total mean square error is defined as : T/2 2 : Ek=1/T ∫ [f(x)-Pk(x)] dx. If the coefficients in Pk(x) are determined by the : -T/2 : Euler Formula,prove that the approximation has the "least total mean square : error"property. : 麻煩各位了= = 假如 k f(x) = P (x) = Ao + Σ [An cos(ω nx) + Bn sin(ω nx)] k n=1 o o T T 收斂於 [-── , ──] 2 2 1 根據定義 ── ║f(x) - P (x)║ < ε b-a k 1 T/2 2 2 = ─── ∫ f (x) - 2f(x)P (x) + P (x) dx T -T/2 k k 打字方便,我把三角級數轉成廣義的Fourier級數 weighting fun. = 1 ∞ P (x) = Σ ck ψk(x) k 0 ↑ Euler's Formula b < P (x) , f(x) > = ∫ P (x) f(x) dx k a k ∞ = Σ ck < ψk , f(x) > ← Fourier Coefficient~~ 0 ∞ 2 2 = Σ ck ║ψk ║ 0 2 = ║P (x)║ k 1 2 2 = ─── (║f(x)║ - ║P (x)║ ) < ε T k 所以有 least total mean square error Property~~ 最小 平均 平方 -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 1.161.197.76
ntust661:不知道這樣算不算 show @@ 03/27 16:03