看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《asdf322505 ()》之銘言: : → → → → : r =e^t cos2ti+e^t sin2tj+ e^tk 在t=拍/4 之 曲率 k(s) : ans:√5/3(e^-拍/4) : 這提該怎嚜算? . → → → → r(t) = e^t * (cos2t - 2sin2t)i + e^t * (sin2t + 2cos2t)j + e^t k .. → → → → r(t) = e^t * (-3cos2t - 4sin2t)i + e^t * (4cos2t - 3sin2t)j + e^t k . .. → → → → r × r = e^2t * (4sin2t - 2cos2t)i + e^2t * (-2sin2t - 4cos2t)j + e^2t * [10 * (cos2t)^2 + 10 * (sin2t)^2] 當 t = π/4 時 . → → → → r(π/4) = e^(π/4) * (-2 i + j + k ) . → => |r(π/4)| = √6 * e^(π/4) . .. → → → → → r × r (π/4) = e^(π/2) * (4i - 2j + 10k ) . .. → → => |r × r (π/4)| = 2√30 * e^(π/2) . .. → → |r × r (π/4)| √5 故 κ = -------------------- = ----- * e^(-π/4) . 3 → 3 |r| -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.133.34
asdf322505:感謝大大的幫忙 05/08 09:41