推 asdf322505:感謝大大的幫忙 05/08 09:41
※ 引述《asdf322505 ()》之銘言:
: → → → →
: r =e^t cos2ti+e^t sin2tj+ e^tk 在t=拍/4 之 曲率 k(s)
: ans:√5/3(e^-拍/4)
: 這提該怎嚜算?
.
→ → → →
r(t) = e^t * (cos2t - 2sin2t)i + e^t * (sin2t + 2cos2t)j + e^t k
..
→ → → →
r(t) = e^t * (-3cos2t - 4sin2t)i + e^t * (4cos2t - 3sin2t)j + e^t k
. ..
→ → → →
r × r = e^2t * (4sin2t - 2cos2t)i + e^2t * (-2sin2t - 4cos2t)j
+ e^2t * [10 * (cos2t)^2 + 10 * (sin2t)^2]
當 t = π/4 時
.
→ → → →
r(π/4) = e^(π/4) * (-2 i + j + k )
.
→
=> |r(π/4)| = √6 * e^(π/4)
. ..
→ → → → →
r × r (π/4) = e^(π/2) * (4i - 2j + 10k )
. ..
→ →
=> |r × r (π/4)| = 2√30 * e^(π/2)
. ..
→ →
|r × r (π/4)| √5
故 κ = -------------------- = ----- * e^(-π/4)
. 3
→ 3
|r|
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.34.133.34