看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《newtype2007 (無業遊民)》之銘言: : m*dv/dt=mg-av^2 v(0)=0 : m,g,a均為常數 : 實在是解不出來,拜託大家了! m*dv/dt = mg - av^2 dv/dt = g - (a/m)v^2 dv/[g - (a/m)v^2] = dt dv/[1 - (a/mg)v^2] = gdt ____ dv/[1 - ( √a/mg v )^2] = gdt ____ ____ ____ d ( √a/mg v) / [1 - ( √a/mg v )^2] = ( √ag/m ) dt ____ Let √a/mg v = x -1 ∫1/(1-x^2)dx = (1/2) ㏑| (1+x)/(1-x) | + C = tanh x + C -1 ____ -1 ____ ____ ____ tanh [ √a/mg v(t) ] - tanh [ √a/mg v(0) ] = √ag/m ( t - 0 ) = √ag/m t -1 ____ ____ -1 ____ tanh [ √a/mg v(t) ] = √ag/m t + tanh [ √a/mg v(0) ] ____ -1 = √ag/m t + tanh [ √a/mg 0 ] ____ -1 = √ag/m t + tanh [ 0 ] ____ = √ag/m t + 0 ____ = √ag/m t ____ ____ √a/mg v(t) = tanh [ √ag/m t ] ____ ____ v(t) = √mg/a tanh [ √ag/m t ] ____ when t → ∞ => v(t) → √mg/a -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.161.246.96