看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《topyoung (o一-一)=○# ( ̄#)3 ̄)》之銘言: : 標題: [理工] 微積分請教 : 時間: Tue Jul 5 16:44:40 2011 : : : : http://wwwc.moex.gov.tw/ExamQuesFiles/Question/099/23000c04.pdf : : 第一題的第二小題 : : 麻煩各位大大了 因為題目中的積分式可以積出有理函數 p(x) A B C D E 也就是 ------------ 可以拆成 --- + ----- + ----- + ----- + --------- x^3(x+1)^2 x x^2 x^3 (x-1) (x-1)^2 分別積分再相加 因為積分結果為有理函數,但1/x或1/(x-1)的積分結果為ln,不為有理函數 所以A=0、D=0 (B+E)x^3 + (C+2B)x^2 + (2C+B)x + C 再將B、C、E通分相加並整理可得 ------------------------------------ x^3(x+1)^2 整理結果的分子部分即為p(x) 因為題目說p(x)為二次多項式 所以B+E=0 又p(-1)=-2,所以將-1代入可得 (C+2B) - (2C+B) + C = -2 也就是B=-2,E=2 再將B=-2反代回p(x)可得 p(x)=(C-4)x^2 + (2C-2)x + C 接著題目要求p(x)在x=-1處對x微分一次的值 先求p'(x) = 2(C-4)x + (2C-2) 接著將-1代入可得p'(-1)=6,即為所求 : 推 mp8113f:怎麼感覺怪怪的 要求dp(-1)對dx微分..dp(-1)=constant 07/05 20:24 : → mp8113f:微分不是0嗎 還是我誤會題目意思 ? 07/05 20:25 m大誤會題目意思了 dp(x) | 如果把題目所求改成 -------| 這樣應該就不會誤會了 dx |x=-1 -- 有錯的話歡迎指正@"@ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.47.73.30 ※ 編輯: chen26 來自: 114.47.73.30 (07/05 23:06)
topyoung:我忘了p(x)為二次多項式可以得B、E了 卡在這 謝謝 07/05 23:11
a016258:push 07/05 23:27
mp8113f:推一個 高手 0.0 ! 07/05 23:38
a016258:我記得這是政大風管某一年的研究所考古題 07/06 03:18