看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《lai90043 (賴伯)》之銘言: : Let W = span{(1,2,3),(4,5,6)} be a subspace in R^3 : find a basis for W的正交補集 ? + 令(a,b,c)為orthogonal basis for W < (1,2,3),(a,b,c) > = 0 => a+2b+3c=0 < (4,5,6),(a,b,c) > = 0 => 4a+5b+6c=0 解聯立 b = -2c a = c orthogonal basis為(a,b,c) = (c, -2c, c) 取 c=1 => (1, -2, 1) : Let T:R^3 → R^3 be the projection of the space R^3 : on the plane x+2y+3z = 0 : find the eigenvalue of T projection matrix的eigenvalue只有0和1 存在x不等於0 使得 Ax = λx λx = Ax = (A^2)x = A(Ax) = A(λx) = λ(Ax) = λ(λx) = (λ^2)x 2 (λ - λ)x = 0 2 λ - λ = λ(λ-1) = 0 λ為0或1 : ========================分隔線===================== : ANS: : 1. (1,-2,1) : 2. 1,0 : 請這問兩題該怎麼解呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.118.110.186 ※ 編輯: mqazz1 來自: 140.118.110.186 (08/19 09:11)
ntust661:推! 08/19 19:21
lai90043:感謝解答 還想請問(A^2)x中的A^2怎麼來的? 08/19 23:55
mqazz1:因為projection matrix的定義 A = A^2 08/20 20:05
a81288653:在平面上的向量,正交投影兩次與正交投影一次的結果相同 08/21 20:29