看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《da0910cc (da0910cc)》之銘言: : 請問標題那個概念 : 要怎麼想呢? k 先令cyclic group是G, G = <a> = {a | k為整數} case 1: G是infinite group i 定義f: (G, *) -> (Z, +) 為 f(a ) = i i j i+j i j f(a * a ) = a = i+j = f(a )+f(a ) => f為homomorphism i j i j 若f(a )=f(a ) => i=j => a = a => f為1-1 i i 對於所有得i屬於Z, 取a 屬於G, 使得 f(a )=i => f為onte 所以 G和(Z,+)同構 case 2: G是finite grouop, 假設o(G)=n 2 n-1 令 G = <a> = {e, a, a , ..., a } m 定義f: G -> Zn 為f(a )=[m], 0 <= m <= n-1 i j i+j i j f(a *a ) = f(a ) = [i+j] = [i]+[j] = f(a )+f(a ) => f為homomorphism 再證f為1-1和onto 所以(G, *)和(Zn, +)同構 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.25.133
da0910cc:感謝!!! 08/25 18:28