看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《armopen (考個沒完)》之銘言: : ※ 引述《ofd168 (大色狼來襲)》之銘言: : : Let L:V→W be linear transformation and let T be a subspace of W : : The inverse image of T denote L^-1(T) is defined by : : L^-1(T) = { v 屬於 V | L(v) 屬於 T} : : Show that L^-1(T) is subspace of V. : : 很直覺會成立 但是怎麼證明呢? : : 感謝各位大大了 : 這種問題有一個直覺的反推證明方法,題目就是證明 : Let u, v in L^(-1)(T) and α in F (a field). Then αu + v in L^(-1)(T). : i.e. L(αu + v) in T <=> α L(u) + L(v) in T (since T is linear). : This is trivial since L(u), L(v) in T and T is a subspace of W. 推文的最後一位網友說的是外行話! 將我上面提到的證法寫下來就是完整證明! 不懂證明如何思考就不要說些外行話,用一般人所謂嚴謹的證法重寫如下: Let u, v in L^(-1)(T) and α in F (a field). Then L(u), L(v) in T. Since T is a subspace of W, αL(u) + L(v) in T. Therefore, L(αu + v) in T since T is linear. That is, αu + v in L^(-1)(T) and hence L^(-1)(T) is a subspace of V. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.176.167 ※ 編輯: armopen 來自: 114.37.176.167 (09/08 00:29)
ofd168:再推 09/08 09:04
AIdrifter:很抱歉 我只是說出看法 一一" 如有冒犯請見諒 09/11 17:03
AIdrifter:因為證子空間要寫成linear 雖然說這是雙向的 09/11 17:33
simpleplanya: 推 10/16 12:52