※ 引述《lai90043 (賴伯)》之銘言:
: 1.Let u be a unit vector in R^n and A = I - 2uu^T
: -1
: determine A .
: 2.Let a1.a2...ak be the singular values of an m*n
: T
: matrix A .Find det(In + A A).
: =====================================================
: 1.本來想直接將A = I - 2uu^T 取invers 但是馬上卡住解不下去
: 2.不知該如何下手 singular value有什麼特別的意思嗎?
---
其實網路都有現成的公式和證明 XD
不知道怎麼套用在提出來吧 :
1. Sherman–Morrison formula
2. Sylvester's determinant theorem
---
1.
-1
令 B = A
T T
則 I = AB = B - 2uu B = B - 2uC , where C = u B ____(1)
整理上式可得 B = I + 2uC , 再套回 (1) 式:
T T
C = u ( I + 2uC ) = u + 2C (since u is an unit vector)
T
解得 C = -u
-1 T
因此 A = B = I + 2uC = I - 2uu
2.
T
考慮 SVD 分解: A = UΣV , U、V: unitary matrix
T T 2 T
則 det(I + A A) = det( VV + VΣ V )
2 T
= det(V)*det(I+Σ )*det(V )
k 2
= Π( 1 + a_i )
i=1
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.113.211.136
※ 編輯: doom8199 來自: 140.113.211.136 (09/08 08:36)