看板 Grad-ProbAsk 關於我們 聯絡資訊
題目: Please find the area ofthe region bounded by x-axis and one arch of the cycloid(擺線) given by: x=a(t-sint) and y=a(1-cost) 答案: A =∫ y dx 2π =∫ a(1-cost) d(a(t-sint)) 0 2 = 3πa 問題: A =∫ y dx <=? 上下限0-2π <=? 題目3: x i -z j +y k Let vector field F = ------------------ x^2 + y^2 + z^2 the posiion vector r = xi + yj + zk and the line path C be on the plane x=0 and the extend from the point (0 1 0) to the point (0 -2 0). Are the line integrals ∫ F˙dr and ∫ F ╳ dr independent of path? c c 問題: ...................... 故若C為yz平面上不含原點的區域中的任意曲線時 該積分值與路徑無關 且 (0 -2 0) z z |(0 -2 0) I = ∫ d (tan^-1 ---) = tan^-1 ----- | = -π (0 1 0) y y |(0 1 0) ︿︿︿︿︿︿ y 就是我積出來的 -tan^-1 ----- 是積錯嗎? 然後若照課本答案將上下限帶入 z 0 0 tan^-1 ----- -tan^-1 ------ = -π <= 這樣不是會變0嗎 -π是? 1 -2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.35.149.203 ※ 編輯: bizzard 來自: 114.35.149.203 (10/20 23:51)