看板 Grad-ProbAsk 關於我們 聯絡資訊
2 2 2 若{G,*}為一群,若且唯若(a * b) = a * b 所有的a,b屬於R , 則 G為交換群,試證之。 (P.F) 2 2 2 →: (a * b) = a * b => a * b * b * a 2 2 2 因為 (a * b) = (a * b) * (a * b) = a * b -1 -1 -1 2 2 -1 =>a * a * b * a * b * b = a * a * b * b =>b * a = a * b 為交換群 ------------------------------------------------(1) 2 2 2 ←: G 為交換群 => (a * b ) = a * b (a * b) = (a * b) * (a * b) = a * (b * a) * b 2 2 = a * (a * b) * b = (a * a) * (b * b) = a * b ------------------------------------------------(2) 我的向右證明是 -1 因為為群 let b = a 2 2 2 (a * a ^ -1) = a * (a ^ -1) = e * e = e 2 2 2 (a ^ -1 * a) = (a ^ -1) * a = e * e = e -1 -1 所以 a * a = a * a = e 所以為交換群 ------------------------------------------------ 以上(1)的證明我看不懂,可以幫忙解釋嗎? 跟我的證明這樣可以嗎? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 80.63.56.147