看板 Grad-ProbAsk 關於我們 聯絡資訊
(a) x =/= 0 , <x,x> = (Ax)^T(Ax) > 0 , 令 Ax = [ x1,x2,x3 ... xn]^T <x,x> = x1^2 + x2^2 + ... + xn^2 > 0 => x1,x2...xn 不全為0 也就是Ax =/= 0 A若可逆則Ax = 0 只有當x = 0才成立 因此A要可逆 (b) A : n*n x : n*1 Ax : n*1 (Ax)^T : 1*n (Ax)^T(Ay) : 1*1 ,所以(Ax)^T(Ay) = ((Ax)^T(Ay))^T 希望沒錯QQ ※ 引述《askaleroux (aska)》之銘言: : Let the elements of an inner product space V be all vectors in R^n : Define as : <x,y> = (Ax)^T(Ay) where A is an n*n matrix : (a) What is the most genera; matrix A such that above is an inner product : => A必須可逆(Why????) : (b) What are the properties stated in (a) ? : 其中 : <x,y> = (Ax)^T(Ay) = ((Ax)^T(Ay))^T = (Ay)^T(Ax) : 為什麼忽然加了一個轉置還會相等? : ============================================================= : 有請大大姐答 : 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 123.195.193.134
wheels:黃子嘉上課講義好像有這題,應該沒錯! 11/24 21:34
ntust661:只能推了 11/24 21:40
wheels:(a)的最後x!=0 => Ax!=0 則 Ax=0 => x=0 所以A:nonsingular 11/24 21:40
wheels:狗尾續貂一下XD 11/24 21:41
askaleroux:感謝 11/25 23:19