看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《shareing ( )》之銘言: : 最後一題 : Let V = {v1 v2 v3} be the basis of R^3 where : [1] [-1] [0] : v1 = [0] v2 = [ 2] v3 = [1] : [1] [ 2] [2] : and W = {w1 w2} be the basis of R^2 with : [3] [5] : w1 = [1] w2 = [2] : Let T:R^2 -> R^3 be a linear transformation such that : [3] [1] [5] [1] : T [1] = [0] and T[2] = [0] : [0] [1] : [1] : (c)小題 Find T[0] ok : But : (d)小題 Find the matrix of T relative to the standard of R^2 -> R^3. : (e)小題 Find the matrix of T relative to W and V. : 不會做 : 請大家給我提示 : 謝謝 (e)做這種基底變換+線性轉換建議畫路線圖 s 1. 先做[I] w s [3 1] 而[I] =[5 2] (W → S) w 2. 做[T]s 不用做,就是(d)小題答案 (T:R^2 -> R^3) v 3.做[I] s -1 v [1 -1 0] 而[I] =[0 2 1] (S → V) s [1 2 2] v v s 所以[T] =[I] [T]s [I] w s w 希望有幫到你了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.36.18.215
harrypotter2:也可以T([3 1]^t)=a1v1+a2v2+a3v3 12/07 06:40
harrypotter2: T([5 2]^t)=b1v1+b2v2+b3v3 12/07 06:41
harrypotter2:算出來的係數做行並列 12/07 06:41
shareing:了解了 感謝你 12/07 13:35